| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbi | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbii 3400. (Contributed by NM, 25-Nov-2013.) |
| Ref | Expression |
|---|---|
| rabbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | abbib 2800 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)} ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) | |
| 2 | df-rab 3396 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
| 3 | df-rab 3396 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)} | |
| 4 | 2, 3 | eqeq12i 2749 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)}) |
| 5 | df-ral 3048 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒))) | |
| 6 | pm5.32 573 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) | |
| 7 | 6 | albii 1820 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒)) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 8 | 5, 7 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 9 | 1, 4, 8 | 3bitr4ri 304 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1539 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-tru 1544 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-ral 3048 df-rab 3396 |
| This theorem is referenced by: rabbidaOLD 3433 kqfeq 23634 isr0 23647 rabeq12f 38197 eq0rabdioph 42809 eqrabdioph 42810 lerabdioph 42838 eluzrabdioph 42839 ltrabdioph 42841 nerabdioph 42842 dvdsrabdioph 42843 undisjrab 44339 ioodvbdlimc1lem2 45970 ioodvbdlimc2lem 45972 fourierdlem89 46233 fourierdlem91 46235 fourierdlem100 46244 fourierdlem108 46252 fourierdlem112 46256 ovn0 46604 issmfdmpt 46786 line2x 48786 line2y 48787 |
| Copyright terms: Public domain | W3C validator |