|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rabbi | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbii 3442. (Contributed by NM, 25-Nov-2013.) | 
| Ref | Expression | 
|---|---|
| rabbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | abbib 2811 | . 2 ⊢ ({𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)} ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) | |
| 2 | df-rab 3437 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
| 3 | df-rab 3437 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)} | |
| 4 | 2, 3 | eqeq12i 2755 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)}) | 
| 5 | df-ral 3062 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒))) | |
| 6 | pm5.32 573 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) | |
| 7 | 6 | albii 1819 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒)) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) | 
| 8 | 5, 7 | bitri 275 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) | 
| 9 | 1, 4, 8 | 3bitr4ri 304 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∀wal 1538 = wceq 1540 ∈ wcel 2108 {cab 2714 ∀wral 3061 {crab 3436 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-tru 1543 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2715 df-cleq 2729 df-ral 3062 df-rab 3437 | 
| This theorem is referenced by: rabbidaOLD 3477 kqfeq 23732 isr0 23745 rabeq12f 38164 eq0rabdioph 42787 eqrabdioph 42788 lerabdioph 42816 eluzrabdioph 42817 ltrabdioph 42819 nerabdioph 42820 dvdsrabdioph 42821 undisjrab 44325 ioodvbdlimc1lem2 45947 ioodvbdlimc2lem 45949 fourierdlem89 46210 fourierdlem91 46212 fourierdlem100 46221 fourierdlem108 46229 fourierdlem112 46233 ovn0 46581 issmfdmpt 46763 line2x 48675 line2y 48676 | 
| Copyright terms: Public domain | W3C validator |