MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbi Structured version   Visualization version   GIF version

Theorem rabbi 3425
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbii 3400. (Contributed by NM, 25-Nov-2013.)
Assertion
Ref Expression
rabbi (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Proof of Theorem rabbi
StepHypRef Expression
1 abbib 2800 . 2 ({𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)} ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
2 df-rab 3396 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
3 df-rab 3396 . . 3 {𝑥𝐴𝜒} = {𝑥 ∣ (𝑥𝐴𝜒)}
42, 3eqeq12i 2749 . 2 ({𝑥𝐴𝜓} = {𝑥𝐴𝜒} ↔ {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)})
5 df-ral 3048 . . 3 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥(𝑥𝐴 → (𝜓𝜒)))
6 pm5.32 573 . . . 4 ((𝑥𝐴 → (𝜓𝜒)) ↔ ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
76albii 1820 . . 3 (∀𝑥(𝑥𝐴 → (𝜓𝜒)) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
85, 7bitri 275 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
91, 4, 83bitr4ri 304 1 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  {cab 2709  wral 3047  {crab 3395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1544  df-ex 1781  df-nf 1785  df-sb 2068  df-clab 2710  df-cleq 2723  df-ral 3048  df-rab 3396
This theorem is referenced by:  rabbidaOLD  3433  kqfeq  23634  isr0  23647  rabeq12f  38197  eq0rabdioph  42809  eqrabdioph  42810  lerabdioph  42838  eluzrabdioph  42839  ltrabdioph  42841  nerabdioph  42842  dvdsrabdioph  42843  undisjrab  44339  ioodvbdlimc1lem2  45970  ioodvbdlimc2lem  45972  fourierdlem89  46233  fourierdlem91  46235  fourierdlem100  46244  fourierdlem108  46252  fourierdlem112  46256  ovn0  46604  issmfdmpt  46786  line2x  48786  line2y  48787
  Copyright terms: Public domain W3C validator