MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbi Structured version   Visualization version   GIF version

Theorem rabbi 3433
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbii 3408. (Contributed by NM, 25-Nov-2013.)
Assertion
Ref Expression
rabbi (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Proof of Theorem rabbi
StepHypRef Expression
1 abbib 2798 . 2 ({𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)} ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
2 df-rab 3403 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
3 df-rab 3403 . . 3 {𝑥𝐴𝜒} = {𝑥 ∣ (𝑥𝐴𝜒)}
42, 3eqeq12i 2747 . 2 ({𝑥𝐴𝜓} = {𝑥𝐴𝜒} ↔ {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)})
5 df-ral 3045 . . 3 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥(𝑥𝐴 → (𝜓𝜒)))
6 pm5.32 573 . . . 4 ((𝑥𝐴 → (𝜓𝜒)) ↔ ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
76albii 1819 . . 3 (∀𝑥(𝑥𝐴 → (𝜓𝜒)) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
85, 7bitri 275 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
91, 4, 83bitr4ri 304 1 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2707  wral 3044  {crab 3402
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2708  df-cleq 2721  df-ral 3045  df-rab 3403
This theorem is referenced by:  rabbidaOLD  3441  kqfeq  23587  isr0  23600  rabeq12f  38124  eq0rabdioph  42737  eqrabdioph  42738  lerabdioph  42766  eluzrabdioph  42767  ltrabdioph  42769  nerabdioph  42770  dvdsrabdioph  42771  undisjrab  44268  ioodvbdlimc1lem2  45903  ioodvbdlimc2lem  45905  fourierdlem89  46166  fourierdlem91  46168  fourierdlem100  46177  fourierdlem108  46185  fourierdlem112  46189  ovn0  46537  issmfdmpt  46719  line2x  48716  line2y  48717
  Copyright terms: Public domain W3C validator