Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbi Structured version   Visualization version   GIF version

Theorem rabbi 3336
 Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 3425. (Contributed by NM, 25-Nov-2013.)
Assertion
Ref Expression
rabbi (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Proof of Theorem rabbi
StepHypRef Expression
1 abbi 2865 . 2 (∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)) ↔ {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)})
2 df-ral 3111 . . 3 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥(𝑥𝐴 → (𝜓𝜒)))
3 pm5.32 577 . . . 4 ((𝑥𝐴 → (𝜓𝜒)) ↔ ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
43albii 1821 . . 3 (∀𝑥(𝑥𝐴 → (𝜓𝜒)) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
52, 4bitri 278 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
6 df-rab 3115 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
7 df-rab 3115 . . 3 {𝑥𝐴𝜒} = {𝑥 ∣ (𝑥𝐴𝜒)}
86, 7eqeq12i 2813 . 2 ({𝑥𝐴𝜓} = {𝑥𝐴𝜒} ↔ {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)})
91, 5, 83bitr4i 306 1 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399  ∀wal 1536   = wceq 1538   ∈ wcel 2111  {cab 2776  ∀wral 3106  {crab 3110 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-ral 3111  df-rab 3115 This theorem is referenced by:  rabbida  3421  rabbidvaOLD  3426  kqfeq  22343  isr0  22356  rabeq12f  35635  eq0rabdioph  39781  eqrabdioph  39782  lerabdioph  39810  eluzrabdioph  39811  ltrabdioph  39813  nerabdioph  39814  dvdsrabdioph  39815  undisjrab  41074  ioodvbdlimc1lem2  42635  ioodvbdlimc2lem  42637  fourierdlem89  42898  fourierdlem91  42900  fourierdlem100  42909  fourierdlem108  42917  fourierdlem112  42921  ovn0  43266  issmfdmpt  43443  line2x  45227  line2y  45228
 Copyright terms: Public domain W3C validator