MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbi Structured version   Visualization version   GIF version

Theorem rabbi 3439
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbii 3414. (Contributed by NM, 25-Nov-2013.)
Assertion
Ref Expression
rabbi (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Proof of Theorem rabbi
StepHypRef Expression
1 abbib 2799 . 2 ({𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)} ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
2 df-rab 3409 . . 3 {𝑥𝐴𝜓} = {𝑥 ∣ (𝑥𝐴𝜓)}
3 df-rab 3409 . . 3 {𝑥𝐴𝜒} = {𝑥 ∣ (𝑥𝐴𝜒)}
42, 3eqeq12i 2748 . 2 ({𝑥𝐴𝜓} = {𝑥𝐴𝜒} ↔ {𝑥 ∣ (𝑥𝐴𝜓)} = {𝑥 ∣ (𝑥𝐴𝜒)})
5 df-ral 3046 . . 3 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥(𝑥𝐴 → (𝜓𝜒)))
6 pm5.32 573 . . . 4 ((𝑥𝐴 → (𝜓𝜒)) ↔ ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
76albii 1819 . . 3 (∀𝑥(𝑥𝐴 → (𝜓𝜒)) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
85, 7bitri 275 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
91, 4, 83bitr4ri 304 1 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  {cab 2708  wral 3045  {crab 3408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2709  df-cleq 2722  df-ral 3046  df-rab 3409
This theorem is referenced by:  rabbidaOLD  3447  kqfeq  23618  isr0  23631  rabeq12f  38158  eq0rabdioph  42771  eqrabdioph  42772  lerabdioph  42800  eluzrabdioph  42801  ltrabdioph  42803  nerabdioph  42804  dvdsrabdioph  42805  undisjrab  44302  ioodvbdlimc1lem2  45937  ioodvbdlimc2lem  45939  fourierdlem89  46200  fourierdlem91  46202  fourierdlem100  46211  fourierdlem108  46219  fourierdlem112  46223  ovn0  46571  issmfdmpt  46753  line2x  48747  line2y  48748
  Copyright terms: Public domain W3C validator