![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbi | Structured version Visualization version GIF version |
Description: Equivalent wff's correspond to equal restricted class abstractions. Closed theorem form of rabbidva 3402. (Contributed by NM, 25-Nov-2013.) |
Ref | Expression |
---|---|
rabbi | ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | abbi 2907 | . 2 ⊢ (∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒)) ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)}) | |
2 | df-ral 3093 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒))) | |
3 | pm5.32 566 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒)) ↔ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) | |
4 | 3 | albii 1782 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒)) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
5 | 2, 4 | bitri 267 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
6 | df-rab 3097 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} | |
7 | df-rab 3097 | . . 3 ⊢ {𝑥 ∈ 𝐴 ∣ 𝜒} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)} | |
8 | 6, 7 | eqeq12i 2792 | . 2 ⊢ ({𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜓)} = {𝑥 ∣ (𝑥 ∈ 𝐴 ∧ 𝜒)}) |
9 | 1, 5, 8 | 3bitr4i 295 | 1 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 387 ∀wal 1505 = wceq 1507 ∈ wcel 2050 {cab 2758 ∀wral 3088 {crab 3092 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1965 ax-8 2052 ax-9 2059 ax-10 2079 ax-11 2093 ax-12 2106 ax-ext 2750 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2016 df-clab 2759 df-cleq 2771 df-clel 2846 df-ral 3093 df-rab 3097 |
This theorem is referenced by: rabbidva 3402 kqfeq 22039 isr0 22052 bj-rabbida 33730 rabeq12f 34879 eq0rabdioph 38769 eqrabdioph 38770 lerabdioph 38798 eluzrabdioph 38799 ltrabdioph 38801 nerabdioph 38802 dvdsrabdioph 38803 undisjrab 40054 rabbida 40784 ioodvbdlimc1lem2 41648 ioodvbdlimc2lem 41650 fourierdlem89 41912 fourierdlem91 41914 fourierdlem100 41923 fourierdlem108 41931 fourierdlem112 41935 ovn0 42280 issmfdmpt 42457 line2x 44110 line2y 44111 |
Copyright terms: Public domain | W3C validator |