MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqbida Structured version   Visualization version   GIF version

Theorem rabeqbida 3465
Description: Version of rabeqbidva 3452 with two disjoint variable conditions removed and the third replaced by a nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
Hypotheses
Ref Expression
rabeqbida.nf 𝑥𝜑
rabeqbida.1 (𝜑𝐴 = 𝐵)
rabeqbida.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabeqbida (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})

Proof of Theorem rabeqbida
StepHypRef Expression
1 rabeqbida.nf . . 3 𝑥𝜑
2 rabeqbida.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
31, 2rabbida 3462 . 2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
4 rabeqbida.1 . . 3 (𝜑𝐴 = 𝐵)
51, 4rabeqd 3464 . 2 (𝜑 → {𝑥𝐴𝜒} = {𝑥𝐵𝜒})
63, 5eqtrd 2776 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wnf 1782  wcel 2107  {crab 3435
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-nf 1783  df-sb 2064  df-clab 2714  df-cleq 2728  df-clel 2815  df-rab 3436
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator