| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbida | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3401 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) Avoid ax-10 2144, ax-11 2160. (Revised by Wolf Lammen, 14-Mar-2025.) |
| Ref | Expression |
|---|---|
| rabbida.n | ⊢ Ⅎ𝑥𝜑 |
| rabbida.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabbida | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbida.n | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rabbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | pm5.32da 579 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | 1, 3 | rabbida4 3420 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 Ⅎwnf 1784 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-12 2180 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-sb 2068 df-clab 2710 df-cleq 2723 df-rab 3396 |
| This theorem is referenced by: rabbid 3422 rabeqbida 3424 smfpimltmpt 46854 smfpimltxrmptf 46866 smfpimgtmpt 46889 smfpimgtxrmptf 46892 smfrec 46897 smfsupmpt 46923 smfinflem 46925 smfinfmpt 46927 |
| Copyright terms: Public domain | W3C validator |