![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabbida | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). (Contributed by Glauco Siliprandi, 26-Jun-2021.) |
Ref | Expression |
---|---|
rabbida.1 | ⊢ Ⅎ𝑥𝜑 |
rabbida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabbida | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rabbida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | ex 402 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒))) |
4 | 1, 3 | ralrimi 3138 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒)) |
5 | rabbi 3302 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | |
6 | 4, 5 | sylib 210 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 385 = wceq 1653 Ⅎwnf 1879 ∈ wcel 2157 ∀wral 3089 {crab 3093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-ext 2777 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-clab 2786 df-cleq 2792 df-clel 2795 df-ral 3094 df-rab 3098 |
This theorem is referenced by: pimgtmnf 41678 smfpimltmpt 41701 smfpimltxrmpt 41713 smfpimgtmpt 41735 smfpimgtxrmpt 41738 smfrec 41742 smfsupmpt 41767 smfinflem 41769 smfinfmpt 41771 |
Copyright terms: Public domain | W3C validator |