MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbida Structured version   Visualization version   GIF version

Theorem rabbida 3375
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3379 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
Hypotheses
Ref Expression
rabbida.n 𝑥𝜑
rabbida.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabbida (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Proof of Theorem rabbida
StepHypRef Expression
1 rabbida.n . . 3 𝑥𝜑
2 rabbida.1 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ex 416 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 3ralrimi 3128 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
5 rabbi 3286 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
64, 5sylib 221 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1542  wnf 1790  wcel 2114  wral 3053  {crab 3057
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2020  ax-9 2124  ax-10 2145  ax-11 2162  ax-12 2179  ax-ext 2710
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 847  df-tru 1545  df-ex 1787  df-nf 1791  df-sb 2075  df-clab 2717  df-cleq 2730  df-ral 3058  df-rab 3062
This theorem is referenced by:  rabbid  3376  bj-rabeqbida  34741  pimgtmnf  43798  smfpimltmpt  43821  smfpimltxrmpt  43833  smfpimgtmpt  43855  smfpimgtxrmpt  43858  smfrec  43862  smfsupmpt  43887  smfinflem  43889  smfinfmpt  43891
  Copyright terms: Public domain W3C validator