Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabbida | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3410 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
rabbida.n | ⊢ Ⅎ𝑥𝜑 |
rabbida.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabbida | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbida.n | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rabbida.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | ex 412 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒))) |
4 | 1, 3 | ralrimi 3141 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒)) |
5 | rabbi 3314 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | |
6 | 4, 5 | sylib 217 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1541 Ⅎwnf 1789 ∈ wcel 2109 ∀wral 3065 {crab 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-tru 1544 df-ex 1786 df-nf 1790 df-sb 2071 df-clab 2717 df-cleq 2731 df-ral 3070 df-rab 3074 |
This theorem is referenced by: rabbid 3407 bj-rabeqbida 35088 pimgtmnf 44210 smfpimltmpt 44233 smfpimltxrmpt 44245 smfpimgtmpt 44267 smfpimgtxrmpt 44270 smfrec 44274 smfsupmpt 44299 smfinflem 44301 smfinfmpt 44303 |
Copyright terms: Public domain | W3C validator |