| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbida | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3415 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) Avoid ax-10 2142, ax-11 2158. (Revised by Wolf Lammen, 14-Mar-2025.) |
| Ref | Expression |
|---|---|
| rabbida.n | ⊢ Ⅎ𝑥𝜑 |
| rabbida.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabbida | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbida.n | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rabbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | pm5.32da 579 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | 1, 3 | rabbida4 3434 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2109 {crab 3408 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-12 2178 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2709 df-cleq 2722 df-rab 3409 |
| This theorem is referenced by: rabbid 3436 rabeqbida 3438 smfpimltmpt 46751 smfpimltxrmptf 46763 smfpimgtmpt 46786 smfpimgtxrmptf 46789 smfrec 46794 smfsupmpt 46820 smfinflem 46822 smfinfmpt 46824 |
| Copyright terms: Public domain | W3C validator |