MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbida Structured version   Visualization version   GIF version

Theorem rabbida 3416
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3420 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
Hypotheses
Ref Expression
rabbida.n 𝑥𝜑
rabbida.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabbida (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Proof of Theorem rabbida
StepHypRef Expression
1 rabbida.n . . 3 𝑥𝜑
2 rabbida.1 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ex 414 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 3ralrimi 3237 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
5 rabbi 3328 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
64, 5sylib 217 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1539  wnf 1783  wcel 2104  wral 3062  {crab 3284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-tru 1542  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2714  df-cleq 2728  df-ral 3063  df-rab 3287
This theorem is referenced by:  rabbid  3417  bj-rabeqbida  35153  smfpimltmpt  44334  smfpimltxrmptf  44346  smfpimgtmpt  44369  smfpimgtxrmptf  44372  smfrec  44377  smfsupmpt  44402  smfinflem  44404  smfinfmpt  44406
  Copyright terms: Public domain W3C validator