![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabbida | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3440 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) Avoid ax-10 2138, ax-11 2155. (Revised by Wolf Lammen, 14-Mar-2025.) |
Ref | Expression |
---|---|
rabbida.n | ⊢ Ⅎ𝑥𝜑 |
rabbida.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabbida | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbida.n | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | rabbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | pm5.32da 580 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
4 | 1, 3 | rabbida4 3458 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 Ⅎwnf 1786 ∈ wcel 2107 {crab 3433 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-12 2172 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-nf 1787 df-sb 2069 df-clab 2711 df-cleq 2725 df-rab 3434 |
This theorem is referenced by: rabbid 3460 rabeqbida 3462 smfpimltmpt 45462 smfpimltxrmptf 45474 smfpimgtmpt 45497 smfpimgtxrmptf 45500 smfrec 45505 smfsupmpt 45531 smfinflem 45533 smfinfmpt 45535 |
Copyright terms: Public domain | W3C validator |