| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabbida | Structured version Visualization version GIF version | ||
| Description: Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3422 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) Avoid ax-10 2141, ax-11 2157. (Revised by Wolf Lammen, 14-Mar-2025.) |
| Ref | Expression |
|---|---|
| rabbida.n | ⊢ Ⅎ𝑥𝜑 |
| rabbida.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabbida | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabbida.n | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rabbida.1 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | pm5.32da 579 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) |
| 4 | 1, 3 | rabbida4 3441 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 Ⅎwnf 1783 ∈ wcel 2108 {crab 3415 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-12 2177 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-sb 2065 df-clab 2714 df-cleq 2727 df-rab 3416 |
| This theorem is referenced by: rabbid 3443 rabeqbida 3445 smfpimltmpt 46775 smfpimltxrmptf 46787 smfpimgtmpt 46810 smfpimgtxrmptf 46813 smfrec 46818 smfsupmpt 46844 smfinflem 46846 smfinfmpt 46848 |
| Copyright terms: Public domain | W3C validator |