Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rabbida | Structured version Visualization version GIF version |
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3379 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.) |
Ref | Expression |
---|---|
rabbida.n | ⊢ Ⅎ𝑥𝜑 |
rabbida.1 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabbida | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabbida.n | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rabbida.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
3 | 2 | ex 416 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜒))) |
4 | 1, 3 | ralrimi 3128 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒)) |
5 | rabbi 3286 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜒) ↔ {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) | |
6 | 4, 5 | sylib 221 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 = wceq 1542 Ⅎwnf 1790 ∈ wcel 2114 ∀wral 3053 {crab 3057 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-tru 1545 df-ex 1787 df-nf 1791 df-sb 2075 df-clab 2717 df-cleq 2730 df-ral 3058 df-rab 3062 |
This theorem is referenced by: rabbid 3376 bj-rabeqbida 34741 pimgtmnf 43798 smfpimltmpt 43821 smfpimltxrmpt 43833 smfpimgtmpt 43855 smfpimgtxrmpt 43858 smfrec 43862 smfsupmpt 43887 smfinflem 43889 smfinfmpt 43891 |
Copyright terms: Public domain | W3C validator |