MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabbida Structured version   Visualization version   GIF version

Theorem rabbida 3406
Description: Equivalent wff's yield equal restricted class abstractions (deduction form). Version of rabbidva 3410 with disjoint variable condition replaced by nonfreeness hypothesis. (Contributed by BJ, 27-Apr-2019.)
Hypotheses
Ref Expression
rabbida.n 𝑥𝜑
rabbida.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabbida (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})

Proof of Theorem rabbida
StepHypRef Expression
1 rabbida.n . . 3 𝑥𝜑
2 rabbida.1 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32ex 412 . . 3 (𝜑 → (𝑥𝐴 → (𝜓𝜒)))
41, 3ralrimi 3141 . 2 (𝜑 → ∀𝑥𝐴 (𝜓𝜒))
5 rabbi 3314 . 2 (∀𝑥𝐴 (𝜓𝜒) ↔ {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
64, 5sylib 217 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1541  wnf 1789  wcel 2109  wral 3065  {crab 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-tru 1544  df-ex 1786  df-nf 1790  df-sb 2071  df-clab 2717  df-cleq 2731  df-ral 3070  df-rab 3074
This theorem is referenced by:  rabbid  3407  bj-rabeqbida  35088  pimgtmnf  44210  smfpimltmpt  44233  smfpimltxrmpt  44245  smfpimgtmpt  44267  smfpimgtxrmpt  44270  smfrec  44274  smfsupmpt  44299  smfinflem  44301  smfinfmpt  44303
  Copyright terms: Public domain W3C validator