| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqbidva | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove DV conditions. (Revised by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| rabeqbidva.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| rabeqbidva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabeqbidva | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidva.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | rabbidva 3401 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| 3 | rabeqbidva.1 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | eleq2d 2817 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 5 | 4 | anbi1d 631 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜒) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 6 | 5 | rabbidva2 3397 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| 7 | 2, 6 | eqtrd 2766 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-rab 3396 |
| This theorem is referenced by: rabeqbidv 3413 natpropd 17886 gsumpropd2lem 18587 elntg 28962 rmfsupp2 33205 poimirlem28 37687 scotteqd 44329 uspgrlimlem1 48087 domnmsuppn0 48468 eenglngeehlnm 48839 |
| Copyright terms: Public domain | W3C validator |