| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rabeqbidva | Structured version Visualization version GIF version | ||
| Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove DV conditions. (Revised by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| rabeqbidva.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| rabeqbidva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rabeqbidva | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabeqbidva.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 2 | 1 | rabbidva 3427 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| 3 | rabeqbidva.1 | . . . . 5 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 4 | 3 | eleq2d 2821 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵)) |
| 5 | 4 | anbi1d 631 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜒) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒))) |
| 6 | 5 | rabbidva2 3422 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| 7 | 2, 6 | eqtrd 2771 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2708 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-rab 3421 |
| This theorem is referenced by: rabeqbidv 3439 natpropd 17997 gsumpropd2lem 18662 elntg 28968 rmfsupp2 33238 poimirlem28 37677 scotteqd 44228 uspgrlimlem1 47967 domnmsuppn0 48311 eenglngeehlnm 48686 |
| Copyright terms: Public domain | W3C validator |