MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqbidva Structured version   Visualization version   GIF version

Theorem rabeqbidva 3486
Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
rabeqbidva.1 (𝜑𝐴 = 𝐵)
rabeqbidva.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabeqbidva (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rabeqbidva
StepHypRef Expression
1 rabeqbidva.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21rabbidva 3478 . 2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
3 rabeqbidva.1 . . 3 (𝜑𝐴 = 𝐵)
43rabeqdv 3484 . 2 (𝜑 → {𝑥𝐴𝜒} = {𝑥𝐵𝜒})
52, 4eqtrd 2856 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110  {crab 3142
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-ext 2793
This theorem depends on definitions:  df-bi 209  df-an 399  df-ex 1777  df-sb 2066  df-clab 2800  df-cleq 2814  df-clel 2893  df-rab 3147
This theorem is referenced by:  natpropd  17245  gsumpropd2lem  17888  elntg  26769  rmfsupp2  30866  poimirlem28  34919  scotteqd  40573  domnmsuppn0  44418  eenglngeehlnm  44727
  Copyright terms: Public domain W3C validator