MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqbidva Structured version   Visualization version   GIF version

Theorem rabeqbidva 3437
Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.) Remove DV conditions. (Revised by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
rabeqbidva.1 (𝜑𝐴 = 𝐵)
rabeqbidva.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabeqbidva (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)   𝐵(𝑥)

Proof of Theorem rabeqbidva
StepHypRef Expression
1 rabeqbidva.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21rabbidva 3427 . 2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
3 rabeqbidva.1 . . . . 5 (𝜑𝐴 = 𝐵)
43eleq2d 2821 . . . 4 (𝜑 → (𝑥𝐴𝑥𝐵))
54anbi1d 631 . . 3 (𝜑 → ((𝑥𝐴𝜒) ↔ (𝑥𝐵𝜒)))
65rabbidva2 3422 . 2 (𝜑 → {𝑥𝐴𝜒} = {𝑥𝐵𝜒})
72, 6eqtrd 2771 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {crab 3420
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-rab 3421
This theorem is referenced by:  rabeqbidv  3439  natpropd  17997  gsumpropd2lem  18662  elntg  28968  rmfsupp2  33238  poimirlem28  37677  scotteqd  44228  uspgrlimlem1  47967  domnmsuppn0  48311  eenglngeehlnm  48686
  Copyright terms: Public domain W3C validator