MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rabeqbidva Structured version   Visualization version   GIF version

Theorem rabeqbidva 3449
Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.)
Hypotheses
Ref Expression
rabeqbidva.1 (𝜑𝐴 = 𝐵)
rabeqbidva.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rabeqbidva (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem rabeqbidva
StepHypRef Expression
1 rabeqbidva.2 . . 3 ((𝜑𝑥𝐴) → (𝜓𝜒))
21rabbidva 3440 . 2 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐴𝜒})
3 rabeqbidva.1 . . 3 (𝜑𝐴 = 𝐵)
43rabeqdv 3448 . 2 (𝜑 → {𝑥𝐴𝜒} = {𝑥𝐵𝜒})
52, 4eqtrd 2773 1 (𝜑 → {𝑥𝐴𝜓} = {𝑥𝐵𝜒})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  {crab 3433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-rab 3434
This theorem is referenced by:  rabeqbidv  3450  natpropd  17924  gsumpropd2lem  18593  elntg  28221  rmfsupp2  32361  poimirlem28  36453  scotteqd  42928  domnmsuppn0  46946  eenglngeehlnm  47326
  Copyright terms: Public domain W3C validator