![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rabeqbidva | Structured version Visualization version GIF version |
Description: Equality of restricted class abstractions. (Contributed by Mario Carneiro, 26-Jan-2017.) |
Ref | Expression |
---|---|
rabeqbidva.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
rabeqbidva.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rabeqbidva | ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabeqbidva.2 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
2 | 1 | rabbidva 3431 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐴 ∣ 𝜒}) |
3 | rabeqbidva.1 | . . 3 ⊢ (𝜑 → 𝐴 = 𝐵) | |
4 | 3 | rabeqdv 3439 | . 2 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜒} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
5 | 2, 4 | eqtrd 2764 | 1 ⊢ (𝜑 → {𝑥 ∈ 𝐴 ∣ 𝜓} = {𝑥 ∈ 𝐵 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 {crab 3424 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2695 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-sb 2060 df-clab 2702 df-cleq 2716 df-clel 2802 df-rab 3425 |
This theorem is referenced by: rabeqbidv 3441 natpropd 17931 gsumpropd2lem 18602 elntg 28711 rmfsupp2 32853 poimirlem28 37006 scotteqd 43485 domnmsuppn0 47234 eenglngeehlnm 47613 |
Copyright terms: Public domain | W3C validator |