![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rabidd | Structured version Visualization version GIF version |
Description: An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
Ref | Expression |
---|---|
rabidd.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
rabidd.2 | ⊢ (𝜑 → 𝜒) |
Ref | Expression |
---|---|
rabidd | ⊢ (𝜑 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rabidd.1 | . 2 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
2 | rabidd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
3 | rabid 3451 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ (𝑥 ∈ 𝐴 ∧ 𝜒)) | |
4 | 1, 2, 3 | sylanbrc 582 | 1 ⊢ (𝜑 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2105 {crab 3431 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-tru 1543 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 |
This theorem is referenced by: fsupdm 46017 finfdm 46021 |
Copyright terms: Public domain | W3C validator |