| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rabidd | Structured version Visualization version GIF version | ||
| Description: An "identity" law of concretion for restricted abstraction. Special case of Definition 2.1 of [Quine] p. 16. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
| Ref | Expression |
|---|---|
| rabidd.1 | ⊢ (𝜑 → 𝑥 ∈ 𝐴) |
| rabidd.2 | ⊢ (𝜑 → 𝜒) |
| Ref | Expression |
|---|---|
| rabidd | ⊢ (𝜑 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rabidd.1 | . 2 ⊢ (𝜑 → 𝑥 ∈ 𝐴) | |
| 2 | rabidd.2 | . 2 ⊢ (𝜑 → 𝜒) | |
| 3 | rabid 3442 | . 2 ⊢ (𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜒} ↔ (𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 4 | 1, 2, 3 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝑥 ∈ {𝑥 ∈ 𝐴 ∣ 𝜒}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2107 {crab 3420 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2706 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2713 df-cleq 2726 df-clel 2808 df-rab 3421 |
| This theorem is referenced by: fsupdm 46802 finfdm 46806 |
| Copyright terms: Public domain | W3C validator |