![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > iunssdf | Structured version Visualization version GIF version |
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.) |
Ref | Expression |
---|---|
iunssdf.1 | ⊢ Ⅎ𝑥𝜑 |
iunssdf.2 | ⊢ Ⅎ𝑥𝐶 |
iunssdf.3 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) |
Ref | Expression |
---|---|
iunssdf | ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | iunssdf.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | iunssdf.3 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → 𝐵 ⊆ 𝐶) | |
3 | 1, 2 | ralrimia 3254 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
4 | iunssdf.2 | . . 3 ⊢ Ⅎ𝑥𝐶 | |
5 | 4 | iunssf 5047 | . 2 ⊢ (∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 ↔ ∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
6 | 3, 5 | sylibr 233 | 1 ⊢ (𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1784 ∈ wcel 2105 Ⅎwnfc 2882 ∀wral 3060 ⊆ wss 3948 ∪ ciun 4997 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-tru 1543 df-ex 1781 df-nf 1785 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ral 3061 df-rex 3070 df-v 3475 df-in 3955 df-ss 3965 df-iun 4999 |
This theorem is referenced by: fsupdm 46020 finfdm 46024 |
Copyright terms: Public domain | W3C validator |