Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  iunssdf Structured version   Visualization version   GIF version

Theorem iunssdf 45160
Description: Subset theorem for an indexed union. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
iunssdf.1 𝑥𝜑
iunssdf.2 𝑥𝐶
iunssdf.3 ((𝜑𝑥𝐴) → 𝐵𝐶)
Assertion
Ref Expression
iunssdf (𝜑 𝑥𝐴 𝐵𝐶)

Proof of Theorem iunssdf
StepHypRef Expression
1 iunssdf.1 . . 3 𝑥𝜑
2 iunssdf.3 . . 3 ((𝜑𝑥𝐴) → 𝐵𝐶)
31, 2ralrimia 3245 . 2 (𝜑 → ∀𝑥𝐴 𝐵𝐶)
4 iunssdf.2 . . 3 𝑥𝐶
54iunssf 5025 . 2 ( 𝑥𝐴 𝐵𝐶 ↔ ∀𝑥𝐴 𝐵𝐶)
63, 5sylibr 234 1 (𝜑 𝑥𝐴 𝐵𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wnfc 2884  wral 3052  wss 3931   ciun 4972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-tru 1543  df-ex 1780  df-nf 1784  df-sb 2066  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ral 3053  df-rex 3062  df-ss 3948  df-iun 4974
This theorem is referenced by:  fsupdm  46851  finfdm  46855
  Copyright terms: Public domain W3C validator