![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > toprestsubel | Structured version Visualization version GIF version |
Description: A subset is open in the topology it generates via restriction. (Contributed by Glauco Siliprandi, 21-Dec-2024.) |
Ref | Expression |
---|---|
toprestsubel.1 | ⊢ (𝜑 → 𝐽 ∈ Top) |
toprestsubel.2 | ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) |
Ref | Expression |
---|---|
toprestsubel | ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | toprestsubel.1 | . 2 ⊢ (𝜑 → 𝐽 ∈ Top) | |
2 | eqid 2733 | . . . 4 ⊢ ∪ 𝐽 = ∪ 𝐽 | |
3 | 2 | topopn 22909 | . . 3 ⊢ (𝐽 ∈ Top → ∪ 𝐽 ∈ 𝐽) |
4 | 1, 3 | syl 17 | . 2 ⊢ (𝜑 → ∪ 𝐽 ∈ 𝐽) |
5 | toprestsubel.2 | . 2 ⊢ (𝜑 → 𝐴 ⊆ ∪ 𝐽) | |
6 | 1, 4, 5 | restsubel 45044 | 1 ⊢ (𝜑 → 𝐴 ∈ (𝐽 ↾t 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2104 ⊆ wss 3963 ∪ cuni 4914 (class class class)co 7425 ↾t crest 17456 Topctop 22896 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-10 2137 ax-11 2153 ax-12 2173 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pr 5430 ax-un 7747 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1087 df-tru 1538 df-fal 1548 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2536 df-eu 2565 df-clab 2711 df-cleq 2725 df-clel 2812 df-nfc 2888 df-ne 2937 df-ral 3058 df-rex 3067 df-reu 3377 df-rab 3433 df-v 3479 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4915 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5689 df-rel 5690 df-cnv 5691 df-co 5692 df-dm 5693 df-rn 5694 df-res 5695 df-ima 5696 df-iota 6510 df-fun 6560 df-fn 6561 df-f 6562 df-f1 6563 df-fo 6564 df-f1o 6565 df-fv 6566 df-ov 7428 df-oprab 7429 df-mpo 7430 df-rest 17458 df-top 22897 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |