Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  finfdm Structured version   Visualization version   GIF version

Theorem finfdm 46827
Description: The domain of the inf function is defined in Proposition 121F (c) of [Fremlin1], p. 39. See smfinf 46799. Note that this definition of the inf function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fifth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 1-Feb-2025.)
Hypotheses
Ref Expression
finfdm.1 𝑛𝜑
finfdm.2 𝑥𝜑
finfdm.3 𝑚𝜑
finfdm.4 𝑥𝐹
finfdm.5 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
finfdm.6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
finfdm.7 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
Assertion
Ref Expression
finfdm (𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
Distinct variable groups:   𝐷,𝑚   𝑚,𝐹,𝑦   𝑦,𝐻   𝑚,𝑍,𝑛,𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐻(𝑥,𝑚,𝑛)

Proof of Theorem finfdm
StepHypRef Expression
1 finfdm.6 . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
2 finfdm.2 . . . 4 𝑥𝜑
3 nfcv 2891 . . . . 5 𝑥
4 nfcv 2891 . . . . . 6 𝑥𝑍
5 finfdm.7 . . . . . . . . 9 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
6 nfrab1 3415 . . . . . . . . . . 11 𝑥{𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}
73, 6nfmpt 5190 . . . . . . . . . 10 𝑥(𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)})
84, 7nfmpt 5190 . . . . . . . . 9 𝑥(𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
95, 8nfcxfr 2889 . . . . . . . 8 𝑥𝐻
10 nfcv 2891 . . . . . . . 8 𝑥𝑛
119, 10nffv 6832 . . . . . . 7 𝑥(𝐻𝑛)
12 nfcv 2891 . . . . . . 7 𝑥𝑚
1311, 12nffv 6832 . . . . . 6 𝑥((𝐻𝑛)‘𝑚)
144, 13nfiin 4974 . . . . 5 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)
153, 14nfiun 4973 . . . 4 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚)
16 finfdm.3 . . . . . . . . . . 11 𝑚𝜑
17 nfv 1914 . . . . . . . . . . 11 𝑚 𝑥 𝑛𝑍 dom (𝐹𝑛)
1816, 17nfan 1899 . . . . . . . . . 10 𝑚(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
19 nfv 1914 . . . . . . . . . 10 𝑚 𝑦 ∈ ℝ
2018, 19nfan 1899 . . . . . . . . 9 𝑚((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ)
21 nfv 1914 . . . . . . . . 9 𝑚𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
2220, 21nfan 1899 . . . . . . . 8 𝑚(((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
23 finfdm.1 . . . . . . . . . . . . 13 𝑛𝜑
24 nfii1 4979 . . . . . . . . . . . . . 14 𝑛 𝑛𝑍 dom (𝐹𝑛)
2524nfel2 2910 . . . . . . . . . . . . 13 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
2623, 25nfan 1899 . . . . . . . . . . . 12 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
27 nfv 1914 . . . . . . . . . . . 12 𝑛 𝑦 ∈ ℝ
2826, 27nfan 1899 . . . . . . . . . . 11 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ)
29 nfra1 3253 . . . . . . . . . . 11 𝑛𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)
3028, 29nfan 1899 . . . . . . . . . 10 𝑛(((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
31 nfv 1914 . . . . . . . . . 10 𝑛 𝑚 ∈ ℕ
32 nfv 1914 . . . . . . . . . 10 𝑛-𝑦 < 𝑚
3330, 31, 32nf3an 1901 . . . . . . . . 9 𝑛((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚)
34 vex 3440 . . . . . . . . . 10 𝑥 ∈ V
3534a1i 11 . . . . . . . . 9 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) → 𝑥 ∈ V)
36 simp-4r 783 . . . . . . . . . . . . 13 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
37363ad2antl1 1186 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
38 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑛𝑍)
39 eliinid 45089 . . . . . . . . . . . 12 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
4037, 38, 39syl2anc 584 . . . . . . . . . . 11 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
41 simpl2 1193 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
42 nnre 12135 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
4342renegcld 11547 . . . . . . . . . . . . . 14 (𝑚 ∈ ℕ → -𝑚 ∈ ℝ)
4443rexrd 11165 . . . . . . . . . . . . 13 (𝑚 ∈ ℕ → -𝑚 ∈ ℝ*)
4541, 44syl 17 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → -𝑚 ∈ ℝ*)
46 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
47 rexr 11161 . . . . . . . . . . . . . 14 (𝑦 ∈ ℝ → 𝑦 ∈ ℝ*)
4846, 47syl 17 . . . . . . . . . . . . 13 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ*)
49483ad2antl1 1186 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ*)
50 simp-4l 782 . . . . . . . . . . . . . 14 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑛𝑍) → 𝜑)
51503ad2antl1 1186 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝜑)
52 finfdm.5 . . . . . . . . . . . . . . 15 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
53523adant3 1132 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
54 simp3 1138 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → 𝑥 ∈ dom (𝐹𝑛))
5553, 54ffvelcdmd 7019 . . . . . . . . . . . . 13 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
5651, 38, 40, 55syl3anc 1373 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
57463ad2antl1 1186 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
58 simpl3 1194 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → -𝑦 < 𝑚)
59 simp1 1136 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) → 𝑦 ∈ ℝ)
60423ad2ant2 1134 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) → 𝑚 ∈ ℝ)
61 simp3 1138 . . . . . . . . . . . . . 14 ((𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) → -𝑦 < 𝑚)
6259, 60, 61ltnegcon1d 11700 . . . . . . . . . . . . 13 ((𝑦 ∈ ℝ ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) → -𝑚 < 𝑦)
6357, 41, 58, 62syl3anc 1373 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → -𝑚 < 𝑦)
64 simpl1r 1226 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
65 rspa 3218 . . . . . . . . . . . . 13 ((∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ∧ 𝑛𝑍) → 𝑦 ≤ ((𝐹𝑛)‘𝑥))
6664, 38, 65syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑦 ≤ ((𝐹𝑛)‘𝑥))
6745, 49, 56, 63, 66xrltletrd 13063 . . . . . . . . . . 11 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → -𝑚 < ((𝐹𝑛)‘𝑥))
6840, 67rabidd 45133 . . . . . . . . . 10 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)})
69 id 22 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛𝑍)
70 nnex 12134 . . . . . . . . . . . . . . . 16 ℕ ∈ V
7170mptex 7159 . . . . . . . . . . . . . . 15 (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}) ∈ V
7271a1i 11 . . . . . . . . . . . . . 14 (𝑛𝑍 → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}) ∈ V)
735fvmpt2 6941 . . . . . . . . . . . . . 14 ((𝑛𝑍 ∧ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}) ∈ V) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
7469, 72, 73syl2anc 584 . . . . . . . . . . . . 13 (𝑛𝑍 → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)}))
75 finfdm.4 . . . . . . . . . . . . . . . . 17 𝑥𝐹
7675, 10nffv 6832 . . . . . . . . . . . . . . . 16 𝑥(𝐹𝑛)
7776nfdm 5893 . . . . . . . . . . . . . . 15 𝑥dom (𝐹𝑛)
78 fvex 6835 . . . . . . . . . . . . . . . 16 (𝐹𝑛) ∈ V
7978dmex 7842 . . . . . . . . . . . . . . 15 dom (𝐹𝑛) ∈ V
8077, 79rabexf 45112 . . . . . . . . . . . . . 14 {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)} ∈ V
8180a1i 11 . . . . . . . . . . . . 13 ((𝑛𝑍𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)} ∈ V)
8274, 81fvmpt2d 6943 . . . . . . . . . . . 12 ((𝑛𝑍𝑚 ∈ ℕ) → ((𝐻𝑛)‘𝑚) = {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)})
8382eqcomd 2735 . . . . . . . . . . 11 ((𝑛𝑍𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)} = ((𝐻𝑛)‘𝑚))
8438, 41, 83syl2anc 584 . . . . . . . . . 10 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)} = ((𝐻𝑛)‘𝑚))
8568, 84eleqtrd 2830 . . . . . . . . 9 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
8633, 35, 85eliind2 45108 . . . . . . . 8 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) ∧ 𝑚 ∈ ℕ ∧ -𝑦 < 𝑚) → 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
87 renegcl 11427 . . . . . . . . . 10 (𝑦 ∈ ℝ → -𝑦 ∈ ℝ)
8887archd 45140 . . . . . . . . 9 (𝑦 ∈ ℝ → ∃𝑚 ∈ ℕ -𝑦 < 𝑚)
8988ad2antlr 727 . . . . . . . 8 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → ∃𝑚 ∈ ℕ -𝑦 < 𝑚)
9022, 86, 89reximdd 45126 . . . . . . 7 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
9190rexlimdva2 3132 . . . . . 6 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)))
92913impia 1117 . . . . 5 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
93 eliun 4945 . . . . 5 (𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ↔ ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
9492, 93sylibr 234 . . . 4 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)) → 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
952, 15, 94rabssd 45120 . . 3 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)} ⊆ 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
961, 95eqsstrid 3974 . 2 (𝜑𝐷 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
97 nfcv 2891 . . 3 𝑚𝐷
98 nfv 1914 . . . . 5 𝑥 𝑚 ∈ ℕ
992, 98nfan 1899 . . . 4 𝑥(𝜑𝑚 ∈ ℕ)
100 nfrab1 3415 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)}
1011, 100nfcxfr 2889 . . . 4 𝑥𝐷
10223, 31nfan 1899 . . . . . . . 8 𝑛(𝜑𝑚 ∈ ℕ)
103 nfii1 4979 . . . . . . . . 9 𝑛 𝑛𝑍 ((𝐻𝑛)‘𝑚)
104103nfel2 2910 . . . . . . . 8 𝑛 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)
105102, 104nfan 1899 . . . . . . 7 𝑛((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
106 simpr 484 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
107 eliinid 45089 . . . . . . . . . 10 ((𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
108107adantll 714 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
10969adantl 481 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑛𝑍)
110 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
111109, 110, 82syl2anc 584 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) = {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)})
112108, 111eleqtrd 2830 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)})
113 rabidim1 3417 . . . . . . . 8 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)} → 𝑥 ∈ dom (𝐹𝑛))
114112, 113syl 17 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
115105, 106, 114eliind2 45108 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
11643ad2antlr 727 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → -𝑚 ∈ ℝ)
117 breq1 5095 . . . . . . . . 9 (𝑦 = -𝑚 → (𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ -𝑚 ≤ ((𝐹𝑛)‘𝑥)))
118117ralbidv 3152 . . . . . . . 8 (𝑦 = -𝑚 → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 -𝑚 ≤ ((𝐹𝑛)‘𝑥)))
119118adantl 481 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑦 = -𝑚) → (∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥) ↔ ∀𝑛𝑍 -𝑚 ≤ ((𝐹𝑛)‘𝑥)))
120110, 44syl 17 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → -𝑚 ∈ ℝ*)
121 simplll 774 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝜑)
122121, 109, 114, 55syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
123 rabidim2 45080 . . . . . . . . . 10 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ -𝑚 < ((𝐹𝑛)‘𝑥)} → -𝑚 < ((𝐹𝑛)‘𝑥))
124112, 123syl 17 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → -𝑚 < ((𝐹𝑛)‘𝑥))
125120, 122, 124xrltled 13052 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → -𝑚 ≤ ((𝐹𝑛)‘𝑥))
126105, 125ralrimia 3228 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → ∀𝑛𝑍 -𝑚 ≤ ((𝐹𝑛)‘𝑥))
127116, 119, 126rspcedvd 3579 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥))
128115, 127rabidd 45133 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 𝑦 ≤ ((𝐹𝑛)‘𝑥)})
129128, 1eleqtrrdi 2839 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥𝐷)
13099, 14, 101, 129ssdf2 45119 . . 3 ((𝜑𝑚 ∈ ℕ) → 𝑛𝑍 ((𝐻𝑛)‘𝑚) ⊆ 𝐷)
13116, 97, 130iunssdf 45134 . 2 (𝜑 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ⊆ 𝐷)
13296, 131eqssd 3953 1 (𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wnf 1783  wcel 2109  wnfc 2876  wral 3044  wrex 3053  {crab 3394  Vcvv 3436   ciun 4941   ciin 4942   class class class wbr 5092  cmpt 5173  dom cdm 5619  wf 6478  cfv 6482  cr 11008  *cxr 11148   < clt 11149  cle 11150  -cneg 11348  cn 12128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-er 8625  df-en 8873  df-dom 8874  df-sdom 8875  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-nn 12129
This theorem is referenced by:  finfdm2  46828
  Copyright terms: Public domain W3C validator