Step | Hyp | Ref
| Expression |
1 | | finfdm.6 |
. . 3
β’ π· = {π₯ β β©
π β π dom (πΉβπ) β£ βπ¦ β β βπ β π π¦ β€ ((πΉβπ)βπ₯)} |
2 | | finfdm.2 |
. . . 4
β’
β²π₯π |
3 | | nfcv 2902 |
. . . . 5
β’
β²π₯β |
4 | | nfcv 2902 |
. . . . . 6
β’
β²π₯π |
5 | | finfdm.7 |
. . . . . . . . 9
β’ π» = (π β π β¦ (π β β β¦ {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)})) |
6 | | nfrab1 3450 |
. . . . . . . . . . 11
β’
β²π₯{π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)} |
7 | 3, 6 | nfmpt 5255 |
. . . . . . . . . 10
β’
β²π₯(π β β β¦ {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)}) |
8 | 4, 7 | nfmpt 5255 |
. . . . . . . . 9
β’
β²π₯(π β π β¦ (π β β β¦ {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)})) |
9 | 5, 8 | nfcxfr 2900 |
. . . . . . . 8
β’
β²π₯π» |
10 | | nfcv 2902 |
. . . . . . . 8
β’
β²π₯π |
11 | 9, 10 | nffv 6901 |
. . . . . . 7
β’
β²π₯(π»βπ) |
12 | | nfcv 2902 |
. . . . . . 7
β’
β²π₯π |
13 | 11, 12 | nffv 6901 |
. . . . . 6
β’
β²π₯((π»βπ)βπ) |
14 | 4, 13 | nfiin 5028 |
. . . . 5
β’
β²π₯β© π β π ((π»βπ)βπ) |
15 | 3, 14 | nfiun 5027 |
. . . 4
β’
β²π₯βͺ π β β β© π β π ((π»βπ)βπ) |
16 | | finfdm.3 |
. . . . . . . . . . 11
β’
β²ππ |
17 | | nfv 1916 |
. . . . . . . . . . 11
β’
β²π π₯ β β© π β π dom (πΉβπ) |
18 | 16, 17 | nfan 1901 |
. . . . . . . . . 10
β’
β²π(π β§ π₯ β β©
π β π dom (πΉβπ)) |
19 | | nfv 1916 |
. . . . . . . . . 10
β’
β²π π¦ β β |
20 | 18, 19 | nfan 1901 |
. . . . . . . . 9
β’
β²π((π β§ π₯ β β©
π β π dom (πΉβπ)) β§ π¦ β β) |
21 | | nfv 1916 |
. . . . . . . . 9
β’
β²πβπ β π π¦ β€ ((πΉβπ)βπ₯) |
22 | 20, 21 | nfan 1901 |
. . . . . . . 8
β’
β²π(((π β§ π₯ β β©
π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) |
23 | | finfdm.1 |
. . . . . . . . . . . . 13
β’
β²ππ |
24 | | nfii1 5032 |
. . . . . . . . . . . . . 14
β’
β²πβ© π β π dom (πΉβπ) |
25 | 24 | nfel2 2920 |
. . . . . . . . . . . . 13
β’
β²π π₯ β β© π β π dom (πΉβπ) |
26 | 23, 25 | nfan 1901 |
. . . . . . . . . . . 12
β’
β²π(π β§ π₯ β β©
π β π dom (πΉβπ)) |
27 | | nfv 1916 |
. . . . . . . . . . . 12
β’
β²π π¦ β β |
28 | 26, 27 | nfan 1901 |
. . . . . . . . . . 11
β’
β²π((π β§ π₯ β β©
π β π dom (πΉβπ)) β§ π¦ β β) |
29 | | nfra1 3280 |
. . . . . . . . . . 11
β’
β²πβπ β π π¦ β€ ((πΉβπ)βπ₯) |
30 | 28, 29 | nfan 1901 |
. . . . . . . . . 10
β’
β²π(((π β§ π₯ β β©
π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) |
31 | | nfv 1916 |
. . . . . . . . . 10
β’
β²π π β β |
32 | | nfv 1916 |
. . . . . . . . . 10
β’
β²π-π¦ < π |
33 | 30, 31, 32 | nf3an 1903 |
. . . . . . . . 9
β’
β²π((((π β§ π₯ β β©
π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) |
34 | | vex 3477 |
. . . . . . . . . 10
β’ π₯ β V |
35 | 34 | a1i 11 |
. . . . . . . . 9
β’
(((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β π₯ β V) |
36 | | simp-4r 781 |
. . . . . . . . . . . . 13
β’
(((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β π) β π₯ β β©
π β π dom (πΉβπ)) |
37 | 36 | 3ad2antl1 1184 |
. . . . . . . . . . . 12
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β π₯ β β©
π β π dom (πΉβπ)) |
38 | | simpr 484 |
. . . . . . . . . . . 12
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β π β π) |
39 | | eliinid 44102 |
. . . . . . . . . . . 12
β’ ((π₯ β β© π β π dom (πΉβπ) β§ π β π) β π₯ β dom (πΉβπ)) |
40 | 37, 38, 39 | syl2anc 583 |
. . . . . . . . . . 11
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β π₯ β dom (πΉβπ)) |
41 | | simpl2 1191 |
. . . . . . . . . . . . 13
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β π β β) |
42 | | nnre 12224 |
. . . . . . . . . . . . . . 15
β’ (π β β β π β
β) |
43 | 42 | renegcld 11646 |
. . . . . . . . . . . . . 14
β’ (π β β β -π β
β) |
44 | 43 | rexrd 11269 |
. . . . . . . . . . . . 13
β’ (π β β β -π β
β*) |
45 | 41, 44 | syl 17 |
. . . . . . . . . . . 12
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β -π β β*) |
46 | | simpllr 773 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β π) β π¦ β β) |
47 | | rexr 11265 |
. . . . . . . . . . . . . 14
β’ (π¦ β β β π¦ β
β*) |
48 | 46, 47 | syl 17 |
. . . . . . . . . . . . 13
β’
(((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β π) β π¦ β β*) |
49 | 48 | 3ad2antl1 1184 |
. . . . . . . . . . . 12
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β π¦ β β*) |
50 | | simp-4l 780 |
. . . . . . . . . . . . . 14
β’
(((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β π) β π) |
51 | 50 | 3ad2antl1 1184 |
. . . . . . . . . . . . 13
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β π) |
52 | | finfdm.5 |
. . . . . . . . . . . . . . 15
β’ ((π β§ π β π) β (πΉβπ):dom (πΉβπ)βΆβ*) |
53 | 52 | 3adant3 1131 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π β§ π₯ β dom (πΉβπ)) β (πΉβπ):dom (πΉβπ)βΆβ*) |
54 | | simp3 1137 |
. . . . . . . . . . . . . 14
β’ ((π β§ π β π β§ π₯ β dom (πΉβπ)) β π₯ β dom (πΉβπ)) |
55 | 53, 54 | ffvelcdmd 7087 |
. . . . . . . . . . . . 13
β’ ((π β§ π β π β§ π₯ β dom (πΉβπ)) β ((πΉβπ)βπ₯) β
β*) |
56 | 51, 38, 40, 55 | syl3anc 1370 |
. . . . . . . . . . . 12
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β ((πΉβπ)βπ₯) β
β*) |
57 | 46 | 3ad2antl1 1184 |
. . . . . . . . . . . . 13
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β π¦ β β) |
58 | | simpl3 1192 |
. . . . . . . . . . . . 13
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β -π¦ < π) |
59 | | simp1 1135 |
. . . . . . . . . . . . . 14
β’ ((π¦ β β β§ π β β β§ -π¦ < π) β π¦ β β) |
60 | 42 | 3ad2ant2 1133 |
. . . . . . . . . . . . . 14
β’ ((π¦ β β β§ π β β β§ -π¦ < π) β π β β) |
61 | | simp3 1137 |
. . . . . . . . . . . . . 14
β’ ((π¦ β β β§ π β β β§ -π¦ < π) β -π¦ < π) |
62 | 59, 60, 61 | ltnegcon1d 11799 |
. . . . . . . . . . . . 13
β’ ((π¦ β β β§ π β β β§ -π¦ < π) β -π < π¦) |
63 | 57, 41, 58, 62 | syl3anc 1370 |
. . . . . . . . . . . 12
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β -π < π¦) |
64 | | simpl1r 1224 |
. . . . . . . . . . . . 13
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β βπ β π π¦ β€ ((πΉβπ)βπ₯)) |
65 | | rspa 3244 |
. . . . . . . . . . . . 13
β’
((βπ β
π π¦ β€ ((πΉβπ)βπ₯) β§ π β π) β π¦ β€ ((πΉβπ)βπ₯)) |
66 | 64, 38, 65 | syl2anc 583 |
. . . . . . . . . . . 12
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β π¦ β€ ((πΉβπ)βπ₯)) |
67 | 45, 49, 56, 63, 66 | xrltletrd 13145 |
. . . . . . . . . . 11
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β -π < ((πΉβπ)βπ₯)) |
68 | 40, 67 | rabidd 44151 |
. . . . . . . . . 10
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β π₯ β {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)}) |
69 | | id 22 |
. . . . . . . . . . . . . 14
β’ (π β π β π β π) |
70 | | nnex 12223 |
. . . . . . . . . . . . . . . 16
β’ β
β V |
71 | 70 | mptex 7227 |
. . . . . . . . . . . . . . 15
β’ (π β β β¦ {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)}) β V |
72 | 71 | a1i 11 |
. . . . . . . . . . . . . 14
β’ (π β π β (π β β β¦ {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)}) β V) |
73 | 5 | fvmpt2 7009 |
. . . . . . . . . . . . . 14
β’ ((π β π β§ (π β β β¦ {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)}) β V) β (π»βπ) = (π β β β¦ {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)})) |
74 | 69, 72, 73 | syl2anc 583 |
. . . . . . . . . . . . 13
β’ (π β π β (π»βπ) = (π β β β¦ {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)})) |
75 | | finfdm.4 |
. . . . . . . . . . . . . . . . 17
β’
β²π₯πΉ |
76 | 75, 10 | nffv 6901 |
. . . . . . . . . . . . . . . 16
β’
β²π₯(πΉβπ) |
77 | 76 | nfdm 5950 |
. . . . . . . . . . . . . . 15
β’
β²π₯dom
(πΉβπ) |
78 | | fvex 6904 |
. . . . . . . . . . . . . . . 16
β’ (πΉβπ) β V |
79 | 78 | dmex 7905 |
. . . . . . . . . . . . . . 15
β’ dom
(πΉβπ) β V |
80 | 77, 79 | rabexf 44125 |
. . . . . . . . . . . . . 14
β’ {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)} β V |
81 | 80 | a1i 11 |
. . . . . . . . . . . . 13
β’ ((π β π β§ π β β) β {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)} β V) |
82 | 74, 81 | fvmpt2d 7011 |
. . . . . . . . . . . 12
β’ ((π β π β§ π β β) β ((π»βπ)βπ) = {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)}) |
83 | 82 | eqcomd 2737 |
. . . . . . . . . . 11
β’ ((π β π β§ π β β) β {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)} = ((π»βπ)βπ)) |
84 | 38, 41, 83 | syl2anc 583 |
. . . . . . . . . 10
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)} = ((π»βπ)βπ)) |
85 | 68, 84 | eleqtrd 2834 |
. . . . . . . . 9
β’
((((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β§ π β π) β π₯ β ((π»βπ)βπ)) |
86 | 33, 35, 85 | eliind2 44121 |
. . . . . . . 8
β’
(((((π β§ π₯ β β© π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β§ π β β β§ -π¦ < π) β π₯ β β©
π β π ((π»βπ)βπ)) |
87 | | renegcl 11528 |
. . . . . . . . . 10
β’ (π¦ β β β -π¦ β
β) |
88 | 87 | archd 44158 |
. . . . . . . . 9
β’ (π¦ β β β
βπ β β
-π¦ < π) |
89 | 88 | ad2antlr 724 |
. . . . . . . 8
β’ ((((π β§ π₯ β β©
π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β βπ β β -π¦ < π) |
90 | 22, 86, 89 | reximdd 44143 |
. . . . . . 7
β’ ((((π β§ π₯ β β©
π β π dom (πΉβπ)) β§ π¦ β β) β§ βπ β π π¦ β€ ((πΉβπ)βπ₯)) β βπ β β π₯ β β©
π β π ((π»βπ)βπ)) |
91 | 90 | rexlimdva2 3156 |
. . . . . 6
β’ ((π β§ π₯ β β©
π β π dom (πΉβπ)) β (βπ¦ β β βπ β π π¦ β€ ((πΉβπ)βπ₯) β βπ β β π₯ β β©
π β π ((π»βπ)βπ))) |
92 | 91 | 3impia 1116 |
. . . . 5
β’ ((π β§ π₯ β β©
π β π dom (πΉβπ) β§ βπ¦ β β βπ β π π¦ β€ ((πΉβπ)βπ₯)) β βπ β β π₯ β β©
π β π ((π»βπ)βπ)) |
93 | | eliun 5001 |
. . . . 5
β’ (π₯ β βͺ π β β β© π β π ((π»βπ)βπ) β βπ β β π₯ β β©
π β π ((π»βπ)βπ)) |
94 | 92, 93 | sylibr 233 |
. . . 4
β’ ((π β§ π₯ β β©
π β π dom (πΉβπ) β§ βπ¦ β β βπ β π π¦ β€ ((πΉβπ)βπ₯)) β π₯ β βͺ
π β β β© π β π ((π»βπ)βπ)) |
95 | 2, 15, 94 | rabssd 44133 |
. . 3
β’ (π β {π₯ β β©
π β π dom (πΉβπ) β£ βπ¦ β β βπ β π π¦ β€ ((πΉβπ)βπ₯)} β βͺ π β β β© π β π ((π»βπ)βπ)) |
96 | 1, 95 | eqsstrid 4030 |
. 2
β’ (π β π· β βͺ
π β β β© π β π ((π»βπ)βπ)) |
97 | | nfcv 2902 |
. . 3
β’
β²ππ· |
98 | | nfv 1916 |
. . . . 5
β’
β²π₯ π β β |
99 | 2, 98 | nfan 1901 |
. . . 4
β’
β²π₯(π β§ π β β) |
100 | | nfrab1 3450 |
. . . . 5
β’
β²π₯{π₯ β β©
π β π dom (πΉβπ) β£ βπ¦ β β βπ β π π¦ β€ ((πΉβπ)βπ₯)} |
101 | 1, 100 | nfcxfr 2900 |
. . . 4
β’
β²π₯π· |
102 | 23, 31 | nfan 1901 |
. . . . . . . 8
β’
β²π(π β§ π β β) |
103 | | nfii1 5032 |
. . . . . . . . 9
β’
β²πβ© π β π ((π»βπ)βπ) |
104 | 103 | nfel2 2920 |
. . . . . . . 8
β’
β²π π₯ β β© π β π ((π»βπ)βπ) |
105 | 102, 104 | nfan 1901 |
. . . . . . 7
β’
β²π((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) |
106 | | simpr 484 |
. . . . . . 7
β’ (((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β π₯ β β©
π β π ((π»βπ)βπ)) |
107 | | eliinid 44102 |
. . . . . . . . . 10
β’ ((π₯ β β© π β π ((π»βπ)βπ) β§ π β π) β π₯ β ((π»βπ)βπ)) |
108 | 107 | adantll 711 |
. . . . . . . . 9
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π β π) β π₯ β ((π»βπ)βπ)) |
109 | 69 | adantl 481 |
. . . . . . . . . 10
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π β π) β π β π) |
110 | | simpllr 773 |
. . . . . . . . . 10
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π β π) β π β β) |
111 | 109, 110,
82 | syl2anc 583 |
. . . . . . . . 9
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π β π) β ((π»βπ)βπ) = {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)}) |
112 | 108, 111 | eleqtrd 2834 |
. . . . . . . 8
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π β π) β π₯ β {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)}) |
113 | | rabidim1 3452 |
. . . . . . . 8
β’ (π₯ β {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)} β π₯ β dom (πΉβπ)) |
114 | 112, 113 | syl 17 |
. . . . . . 7
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π β π) β π₯ β dom (πΉβπ)) |
115 | 105, 106,
114 | eliind2 44121 |
. . . . . 6
β’ (((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β π₯ β β©
π β π dom (πΉβπ)) |
116 | 43 | ad2antlr 724 |
. . . . . . 7
β’ (((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β -π β β) |
117 | | breq1 5151 |
. . . . . . . . 9
β’ (π¦ = -π β (π¦ β€ ((πΉβπ)βπ₯) β -π β€ ((πΉβπ)βπ₯))) |
118 | 117 | ralbidv 3176 |
. . . . . . . 8
β’ (π¦ = -π β (βπ β π π¦ β€ ((πΉβπ)βπ₯) β βπ β π -π β€ ((πΉβπ)βπ₯))) |
119 | 118 | adantl 481 |
. . . . . . 7
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π¦ = -π) β (βπ β π π¦ β€ ((πΉβπ)βπ₯) β βπ β π -π β€ ((πΉβπ)βπ₯))) |
120 | 110, 44 | syl 17 |
. . . . . . . . 9
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π β π) β -π β β*) |
121 | | simplll 772 |
. . . . . . . . . 10
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π β π) β π) |
122 | 121, 109,
114, 55 | syl3anc 1370 |
. . . . . . . . 9
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π β π) β ((πΉβπ)βπ₯) β
β*) |
123 | | rabidim2 44093 |
. . . . . . . . . 10
β’ (π₯ β {π₯ β dom (πΉβπ) β£ -π < ((πΉβπ)βπ₯)} β -π < ((πΉβπ)βπ₯)) |
124 | 112, 123 | syl 17 |
. . . . . . . . 9
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π β π) β -π < ((πΉβπ)βπ₯)) |
125 | 120, 122,
124 | xrltled 13134 |
. . . . . . . 8
β’ ((((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β§ π β π) β -π β€ ((πΉβπ)βπ₯)) |
126 | 105, 125 | ralrimia 3254 |
. . . . . . 7
β’ (((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β βπ β π -π β€ ((πΉβπ)βπ₯)) |
127 | 116, 119,
126 | rspcedvd 3614 |
. . . . . 6
β’ (((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β βπ¦ β β βπ β π π¦ β€ ((πΉβπ)βπ₯)) |
128 | 115, 127 | rabidd 44151 |
. . . . 5
β’ (((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β π₯ β {π₯ β β©
π β π dom (πΉβπ) β£ βπ¦ β β βπ β π π¦ β€ ((πΉβπ)βπ₯)}) |
129 | 128, 1 | eleqtrrdi 2843 |
. . . 4
β’ (((π β§ π β β) β§ π₯ β β©
π β π ((π»βπ)βπ)) β π₯ β π·) |
130 | 99, 14, 101, 129 | ssdf2 44132 |
. . 3
β’ ((π β§ π β β) β β© π β π ((π»βπ)βπ) β π·) |
131 | 16, 97, 130 | iunssdf 44152 |
. 2
β’ (π β βͺ π β β β© π β π ((π»βπ)βπ) β π·) |
132 | 96, 131 | eqssd 3999 |
1
β’ (π β π· = βͺ π β β β© π β π ((π»βπ)βπ)) |