Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsupdm Structured version   Visualization version   GIF version

Theorem fsupdm 46763
Description: The domain of the sup function is defined in Proposition 121F (b) of [Fremlin1], p. 38. Note that this definition of the sup function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fourth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
fsupdm.1 𝑛𝜑
fsupdm.2 𝑥𝜑
fsupdm.3 𝑚𝜑
fsupdm.4 𝑥𝐹
fsupdm.5 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
fsupdm.6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
fsupdm.7 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
Assertion
Ref Expression
fsupdm (𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
Distinct variable groups:   𝐷,𝑚   𝑚,𝐹,𝑦   𝑦,𝐻   𝑚,𝑍,𝑛,𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐻(𝑥,𝑚,𝑛)

Proof of Theorem fsupdm
StepHypRef Expression
1 fsupdm.6 . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
2 fsupdm.2 . . . 4 𝑥𝜑
3 nfcv 2908 . . . . 5 𝑥
4 nfcv 2908 . . . . . 6 𝑥𝑍
5 fsupdm.7 . . . . . . . . 9 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
6 nfrab1 3464 . . . . . . . . . . 11 𝑥{𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}
73, 6nfmpt 5273 . . . . . . . . . 10 𝑥(𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
84, 7nfmpt 5273 . . . . . . . . 9 𝑥(𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
95, 8nfcxfr 2906 . . . . . . . 8 𝑥𝐻
10 nfcv 2908 . . . . . . . 8 𝑥𝑛
119, 10nffv 6930 . . . . . . 7 𝑥(𝐻𝑛)
12 nfcv 2908 . . . . . . 7 𝑥𝑚
1311, 12nffv 6930 . . . . . 6 𝑥((𝐻𝑛)‘𝑚)
144, 13nfiin 5047 . . . . 5 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)
153, 14nfiun 5046 . . . 4 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚)
16 fsupdm.3 . . . . . . . . . . 11 𝑚𝜑
17 nfv 1913 . . . . . . . . . . 11 𝑚 𝑥 𝑛𝑍 dom (𝐹𝑛)
1816, 17nfan 1898 . . . . . . . . . 10 𝑚(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
19 nfv 1913 . . . . . . . . . 10 𝑚 𝑦 ∈ ℝ
2018, 19nfan 1898 . . . . . . . . 9 𝑚((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ)
21 nfv 1913 . . . . . . . . 9 𝑚𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦
2220, 21nfan 1898 . . . . . . . 8 𝑚(((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
23 fsupdm.1 . . . . . . . . . . . . 13 𝑛𝜑
24 nfii1 5052 . . . . . . . . . . . . . 14 𝑛 𝑛𝑍 dom (𝐹𝑛)
2524nfcri 2900 . . . . . . . . . . . . 13 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
2623, 25nfan 1898 . . . . . . . . . . . 12 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
27 nfv 1913 . . . . . . . . . . . 12 𝑛 𝑦 ∈ ℝ
2826, 27nfan 1898 . . . . . . . . . . 11 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ)
29 nfra1 3290 . . . . . . . . . . 11 𝑛𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦
3028, 29nfan 1898 . . . . . . . . . 10 𝑛(((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
31 nfv 1913 . . . . . . . . . 10 𝑛 𝑚 ∈ ℕ
32 nfv 1913 . . . . . . . . . 10 𝑛 𝑦 < 𝑚
3330, 31, 32nf3an 1900 . . . . . . . . 9 𝑛((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚)
34 vex 3492 . . . . . . . . . 10 𝑥 ∈ V
3534a1i 11 . . . . . . . . 9 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) → 𝑥 ∈ V)
36 simp-4r 783 . . . . . . . . . . . . 13 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
37363ad2antl1 1185 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
38 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑛𝑍)
39 eliinid 45013 . . . . . . . . . . . 12 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
4037, 38, 39syl2anc 583 . . . . . . . . . . 11 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
41 simp-4l 782 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝜑)
42413ad2antl1 1185 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝜑)
43 fsupdm.5 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
4442, 38, 43syl2anc 583 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
4544, 40ffvelcdmd 7119 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
46 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
4746rexrd 11340 . . . . . . . . . . . . 13 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ*)
48473ad2antl1 1185 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ*)
49 simpl2 1192 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
5049nnxrd 45188 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑚 ∈ ℝ*)
51 simpl1r 1225 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
52 rspa 3254 . . . . . . . . . . . . 13 ((∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝑦)
5351, 38, 52syl2anc 583 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝑦)
54 simpl3 1193 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑦 < 𝑚)
5545, 48, 50, 53, 54xrlelttrd 13222 . . . . . . . . . . 11 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) < 𝑚)
5640, 55rabidd 45060 . . . . . . . . . 10 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
57 trud 1547 . . . . . . . . . . . . . 14 (𝑛𝑍 → ⊤)
58 id 22 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛𝑍)
59 nfcv 2908 . . . . . . . . . . . . . . 15 𝑛𝑍
60 nnex 12299 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
6160mptex 7260 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V
6261a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑛𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V)
6359, 5, 62fvmpt2df 45182 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛𝑍) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
6457, 58, 63syl2anc 583 . . . . . . . . . . . . 13 (𝑛𝑍 → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
65 fsupdm.4 . . . . . . . . . . . . . . . . 17 𝑥𝐹
6665, 10nffv 6930 . . . . . . . . . . . . . . . 16 𝑥(𝐹𝑛)
6766nfdm 5976 . . . . . . . . . . . . . . 15 𝑥dom (𝐹𝑛)
68 fvex 6933 . . . . . . . . . . . . . . . 16 (𝐹𝑛) ∈ V
6968dmex 7949 . . . . . . . . . . . . . . 15 dom (𝐹𝑛) ∈ V
7067, 69rabexf 45036 . . . . . . . . . . . . . 14 {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ V
7170a1i 11 . . . . . . . . . . . . 13 ((𝑛𝑍𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ V)
7264, 71fvmpt2d 7042 . . . . . . . . . . . 12 ((𝑛𝑍𝑚 ∈ ℕ) → ((𝐻𝑛)‘𝑚) = {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
7372eqcomd 2746 . . . . . . . . . . 11 ((𝑛𝑍𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} = ((𝐻𝑛)‘𝑚))
7438, 49, 73syl2anc 583 . . . . . . . . . 10 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} = ((𝐻𝑛)‘𝑚))
7556, 74eleqtrd 2846 . . . . . . . . 9 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
7633, 35, 75eliind2 45032 . . . . . . . 8 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) → 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
77 arch 12550 . . . . . . . . 9 (𝑦 ∈ ℝ → ∃𝑚 ∈ ℕ 𝑦 < 𝑚)
7877ad2antlr 726 . . . . . . . 8 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → ∃𝑚 ∈ ℕ 𝑦 < 𝑚)
7922, 76, 78reximdd 45053 . . . . . . 7 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
8079rexlimdva2 3163 . . . . . 6 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)))
81803impia 1117 . . . . 5 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
82 eliun 5019 . . . . 5 (𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ↔ ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
8381, 82sylibr 234 . . . 4 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
842, 15, 83rabssd 45044 . . 3 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
851, 84eqsstrid 4057 . 2 (𝜑𝐷 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
86 nfcv 2908 . . 3 𝑚𝐷
87 nfv 1913 . . . . 5 𝑥 𝑚 ∈ ℕ
882, 87nfan 1898 . . . 4 𝑥(𝜑𝑚 ∈ ℕ)
89 nfrab1 3464 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
901, 89nfcxfr 2906 . . . 4 𝑥𝐷
9123, 31nfan 1898 . . . . . . . 8 𝑛(𝜑𝑚 ∈ ℕ)
92 nfii1 5052 . . . . . . . . 9 𝑛 𝑛𝑍 ((𝐻𝑛)‘𝑚)
9392nfcri 2900 . . . . . . . 8 𝑛 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)
9491, 93nfan 1898 . . . . . . 7 𝑛((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
9534a1i 11 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 ∈ V)
96 eliinid 45013 . . . . . . . . . 10 ((𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
9796adantll 713 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
98 simpr 484 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑛𝑍)
99 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
10098, 99, 72syl2anc 583 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) = {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
10197, 100eleqtrd 2846 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
102 rabidim1 3466 . . . . . . . 8 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} → 𝑥 ∈ dom (𝐹𝑛))
103101, 102syl 17 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
10494, 95, 103eliind2 45032 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
105 nnre 12300 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
106105ad2antlr 726 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑚 ∈ ℝ)
107 breq2 5170 . . . . . . . . 9 (𝑦 = 𝑚 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑛)‘𝑥) ≤ 𝑚))
108107ralbidv 3184 . . . . . . . 8 (𝑦 = 𝑚 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑚))
109108adantl 481 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑦 = 𝑚) → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑚))
110 simplll 774 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝜑)
111433adant3 1132 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
112 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → 𝑥 ∈ dom (𝐹𝑛))
113111, 112ffvelcdmd 7119 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
114110, 98, 103, 113syl3anc 1371 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
11599nnxrd 45188 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑚 ∈ ℝ*)
116 rabidim2 45004 . . . . . . . . . 10 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} → ((𝐹𝑛)‘𝑥) < 𝑚)
117101, 116syl 17 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) < 𝑚)
118114, 115, 117xrltled 13212 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝑚)
11994, 118ralrimia 3264 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑚)
120106, 109, 119rspcedvd 3637 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
121104, 120rabidd 45060 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦})
122121, 1eleqtrrdi 2855 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥𝐷)
12388, 14, 90, 122ssdf2 45043 . . 3 ((𝜑𝑚 ∈ ℕ) → 𝑛𝑍 ((𝐻𝑛)‘𝑚) ⊆ 𝐷)
12416, 86, 123iunssdf 45061 . 2 (𝜑 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ⊆ 𝐷)
12585, 124eqssd 4026 1 (𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wtru 1538  wnf 1781  wcel 2108  wnfc 2893  wral 3067  wrex 3076  {crab 3443  Vcvv 3488   ciun 5015   ciin 5016   class class class wbr 5166  cmpt 5249  dom cdm 5700  wf 6569  cfv 6573  cr 11183  *cxr 11323   < clt 11324  cle 11325  cn 12293
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294
This theorem is referenced by:  fsupdm2  46764
  Copyright terms: Public domain W3C validator