Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsupdm Structured version   Visualization version   GIF version

Theorem fsupdm 46847
Description: The domain of the sup function is defined in Proposition 121F (b) of [Fremlin1], p. 38. Note that this definition of the sup function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fourth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
fsupdm.1 𝑛𝜑
fsupdm.2 𝑥𝜑
fsupdm.3 𝑚𝜑
fsupdm.4 𝑥𝐹
fsupdm.5 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
fsupdm.6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
fsupdm.7 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
Assertion
Ref Expression
fsupdm (𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
Distinct variable groups:   𝐷,𝑚   𝑚,𝐹,𝑦   𝑦,𝐻   𝑚,𝑍,𝑛,𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐻(𝑥,𝑚,𝑛)

Proof of Theorem fsupdm
StepHypRef Expression
1 fsupdm.6 . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
2 fsupdm.2 . . . 4 𝑥𝜑
3 nfcv 2892 . . . . 5 𝑥
4 nfcv 2892 . . . . . 6 𝑥𝑍
5 fsupdm.7 . . . . . . . . 9 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
6 nfrab1 3429 . . . . . . . . . . 11 𝑥{𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}
73, 6nfmpt 5208 . . . . . . . . . 10 𝑥(𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
84, 7nfmpt 5208 . . . . . . . . 9 𝑥(𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
95, 8nfcxfr 2890 . . . . . . . 8 𝑥𝐻
10 nfcv 2892 . . . . . . . 8 𝑥𝑛
119, 10nffv 6871 . . . . . . 7 𝑥(𝐻𝑛)
12 nfcv 2892 . . . . . . 7 𝑥𝑚
1311, 12nffv 6871 . . . . . 6 𝑥((𝐻𝑛)‘𝑚)
144, 13nfiin 4991 . . . . 5 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)
153, 14nfiun 4990 . . . 4 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚)
16 fsupdm.3 . . . . . . . . . . 11 𝑚𝜑
17 nfv 1914 . . . . . . . . . . 11 𝑚 𝑥 𝑛𝑍 dom (𝐹𝑛)
1816, 17nfan 1899 . . . . . . . . . 10 𝑚(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
19 nfv 1914 . . . . . . . . . 10 𝑚 𝑦 ∈ ℝ
2018, 19nfan 1899 . . . . . . . . 9 𝑚((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ)
21 nfv 1914 . . . . . . . . 9 𝑚𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦
2220, 21nfan 1899 . . . . . . . 8 𝑚(((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
23 fsupdm.1 . . . . . . . . . . . . 13 𝑛𝜑
24 nfii1 4996 . . . . . . . . . . . . . 14 𝑛 𝑛𝑍 dom (𝐹𝑛)
2524nfcri 2884 . . . . . . . . . . . . 13 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
2623, 25nfan 1899 . . . . . . . . . . . 12 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
27 nfv 1914 . . . . . . . . . . . 12 𝑛 𝑦 ∈ ℝ
2826, 27nfan 1899 . . . . . . . . . . 11 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ)
29 nfra1 3262 . . . . . . . . . . 11 𝑛𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦
3028, 29nfan 1899 . . . . . . . . . 10 𝑛(((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
31 nfv 1914 . . . . . . . . . 10 𝑛 𝑚 ∈ ℕ
32 nfv 1914 . . . . . . . . . 10 𝑛 𝑦 < 𝑚
3330, 31, 32nf3an 1901 . . . . . . . . 9 𝑛((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚)
34 vex 3454 . . . . . . . . . 10 𝑥 ∈ V
3534a1i 11 . . . . . . . . 9 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) → 𝑥 ∈ V)
36 simp-4r 783 . . . . . . . . . . . . 13 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
37363ad2antl1 1186 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
38 simpr 484 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑛𝑍)
39 eliinid 45112 . . . . . . . . . . . 12 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
4037, 38, 39syl2anc 584 . . . . . . . . . . 11 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
41 simp-4l 782 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝜑)
42413ad2antl1 1186 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝜑)
43 fsupdm.5 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
4442, 38, 43syl2anc 584 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
4544, 40ffvelcdmd 7060 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
46 simpllr 775 . . . . . . . . . . . . . 14 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
4746rexrd 11231 . . . . . . . . . . . . 13 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ*)
48473ad2antl1 1186 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ*)
49 simpl2 1193 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
5049nnxrd 45279 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑚 ∈ ℝ*)
51 simpl1r 1226 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
52 rspa 3227 . . . . . . . . . . . . 13 ((∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝑦)
5351, 38, 52syl2anc 584 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝑦)
54 simpl3 1194 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑦 < 𝑚)
5545, 48, 50, 53, 54xrlelttrd 13127 . . . . . . . . . . 11 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) < 𝑚)
5640, 55rabidd 45156 . . . . . . . . . 10 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
57 trud 1550 . . . . . . . . . . . . . 14 (𝑛𝑍 → ⊤)
58 id 22 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛𝑍)
59 nfcv 2892 . . . . . . . . . . . . . . 15 𝑛𝑍
60 nnex 12199 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
6160mptex 7200 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V
6261a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑛𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V)
6359, 5, 62fvmpt2df 45273 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛𝑍) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
6457, 58, 63syl2anc 584 . . . . . . . . . . . . 13 (𝑛𝑍 → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
65 fsupdm.4 . . . . . . . . . . . . . . . . 17 𝑥𝐹
6665, 10nffv 6871 . . . . . . . . . . . . . . . 16 𝑥(𝐹𝑛)
6766nfdm 5918 . . . . . . . . . . . . . . 15 𝑥dom (𝐹𝑛)
68 fvex 6874 . . . . . . . . . . . . . . . 16 (𝐹𝑛) ∈ V
6968dmex 7888 . . . . . . . . . . . . . . 15 dom (𝐹𝑛) ∈ V
7067, 69rabexf 45135 . . . . . . . . . . . . . 14 {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ V
7170a1i 11 . . . . . . . . . . . . 13 ((𝑛𝑍𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ V)
7264, 71fvmpt2d 6984 . . . . . . . . . . . 12 ((𝑛𝑍𝑚 ∈ ℕ) → ((𝐻𝑛)‘𝑚) = {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
7372eqcomd 2736 . . . . . . . . . . 11 ((𝑛𝑍𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} = ((𝐻𝑛)‘𝑚))
7438, 49, 73syl2anc 584 . . . . . . . . . 10 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} = ((𝐻𝑛)‘𝑚))
7556, 74eleqtrd 2831 . . . . . . . . 9 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
7633, 35, 75eliind2 45131 . . . . . . . 8 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) → 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
77 arch 12446 . . . . . . . . 9 (𝑦 ∈ ℝ → ∃𝑚 ∈ ℕ 𝑦 < 𝑚)
7877ad2antlr 727 . . . . . . . 8 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → ∃𝑚 ∈ ℕ 𝑦 < 𝑚)
7922, 76, 78reximdd 45149 . . . . . . 7 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
8079rexlimdva2 3137 . . . . . 6 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)))
81803impia 1117 . . . . 5 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
82 eliun 4962 . . . . 5 (𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ↔ ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
8381, 82sylibr 234 . . . 4 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
842, 15, 83rabssd 45143 . . 3 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
851, 84eqsstrid 3988 . 2 (𝜑𝐷 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
86 nfcv 2892 . . 3 𝑚𝐷
87 nfv 1914 . . . . 5 𝑥 𝑚 ∈ ℕ
882, 87nfan 1899 . . . 4 𝑥(𝜑𝑚 ∈ ℕ)
89 nfrab1 3429 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
901, 89nfcxfr 2890 . . . 4 𝑥𝐷
9123, 31nfan 1899 . . . . . . . 8 𝑛(𝜑𝑚 ∈ ℕ)
92 nfii1 4996 . . . . . . . . 9 𝑛 𝑛𝑍 ((𝐻𝑛)‘𝑚)
9392nfcri 2884 . . . . . . . 8 𝑛 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)
9491, 93nfan 1899 . . . . . . 7 𝑛((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
9534a1i 11 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 ∈ V)
96 eliinid 45112 . . . . . . . . . 10 ((𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
9796adantll 714 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
98 simpr 484 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑛𝑍)
99 simpllr 775 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
10098, 99, 72syl2anc 584 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) = {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
10197, 100eleqtrd 2831 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
102 rabidim1 3431 . . . . . . . 8 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} → 𝑥 ∈ dom (𝐹𝑛))
103101, 102syl 17 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
10494, 95, 103eliind2 45131 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
105 nnre 12200 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
106105ad2antlr 727 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑚 ∈ ℝ)
107 breq2 5114 . . . . . . . . 9 (𝑦 = 𝑚 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑛)‘𝑥) ≤ 𝑚))
108107ralbidv 3157 . . . . . . . 8 (𝑦 = 𝑚 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑚))
109108adantl 481 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑦 = 𝑚) → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑚))
110 simplll 774 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝜑)
111433adant3 1132 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
112 simp3 1138 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → 𝑥 ∈ dom (𝐹𝑛))
113111, 112ffvelcdmd 7060 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
114110, 98, 103, 113syl3anc 1373 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
11599nnxrd 45279 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑚 ∈ ℝ*)
116 rabidim2 45103 . . . . . . . . . 10 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} → ((𝐹𝑛)‘𝑥) < 𝑚)
117101, 116syl 17 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) < 𝑚)
118114, 115, 117xrltled 13117 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝑚)
11994, 118ralrimia 3237 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑚)
120106, 109, 119rspcedvd 3593 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
121104, 120rabidd 45156 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦})
122121, 1eleqtrrdi 2840 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥𝐷)
12388, 14, 90, 122ssdf2 45142 . . 3 ((𝜑𝑚 ∈ ℕ) → 𝑛𝑍 ((𝐻𝑛)‘𝑚) ⊆ 𝐷)
12416, 86, 123iunssdf 45157 . 2 (𝜑 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ⊆ 𝐷)
12585, 124eqssd 3967 1 (𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wtru 1541  wnf 1783  wcel 2109  wnfc 2877  wral 3045  wrex 3054  {crab 3408  Vcvv 3450   ciun 4958   ciin 4959   class class class wbr 5110  cmpt 5191  dom cdm 5641  wf 6510  cfv 6514  cr 11074  *cxr 11214   < clt 11215  cle 11216  cn 12193
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194
This theorem is referenced by:  fsupdm2  46848
  Copyright terms: Public domain W3C validator