Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsupdm Structured version   Visualization version   GIF version

Theorem fsupdm 46497
Description: The domain of the sup function is defined in Proposition 121F (b) of [Fremlin1], p. 38. Note that this definition of the sup function is quite general, as it does not require the original functions to be sigma-measurable, and it could be applied to uncountable sets of functions. The equality proved here is part of the proof of the fourth statement of Proposition 121H in [Fremlin1], p. 39. (Contributed by Glauco Siliprandi, 24-Jan-2025.)
Hypotheses
Ref Expression
fsupdm.1 𝑛𝜑
fsupdm.2 𝑥𝜑
fsupdm.3 𝑚𝜑
fsupdm.4 𝑥𝐹
fsupdm.5 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
fsupdm.6 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
fsupdm.7 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
Assertion
Ref Expression
fsupdm (𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
Distinct variable groups:   𝐷,𝑚   𝑚,𝐹,𝑦   𝑦,𝐻   𝑚,𝑍,𝑛,𝑥,𝑦   𝜑,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑚,𝑛)   𝐷(𝑥,𝑦,𝑛)   𝐹(𝑥,𝑛)   𝐻(𝑥,𝑚,𝑛)

Proof of Theorem fsupdm
StepHypRef Expression
1 fsupdm.6 . . 3 𝐷 = {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
2 fsupdm.2 . . . 4 𝑥𝜑
3 nfcv 2892 . . . . 5 𝑥
4 nfcv 2892 . . . . . 6 𝑥𝑍
5 fsupdm.7 . . . . . . . . 9 𝐻 = (𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
6 nfrab1 3440 . . . . . . . . . . 11 𝑥{𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}
73, 6nfmpt 5251 . . . . . . . . . 10 𝑥(𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
84, 7nfmpt 5251 . . . . . . . . 9 𝑥(𝑛𝑍 ↦ (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
95, 8nfcxfr 2890 . . . . . . . 8 𝑥𝐻
10 nfcv 2892 . . . . . . . 8 𝑥𝑛
119, 10nffv 6901 . . . . . . 7 𝑥(𝐻𝑛)
12 nfcv 2892 . . . . . . 7 𝑥𝑚
1311, 12nffv 6901 . . . . . 6 𝑥((𝐻𝑛)‘𝑚)
144, 13nfiin 5025 . . . . 5 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)
153, 14nfiun 5024 . . . 4 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚)
16 fsupdm.3 . . . . . . . . . . 11 𝑚𝜑
17 nfv 1910 . . . . . . . . . . 11 𝑚 𝑥 𝑛𝑍 dom (𝐹𝑛)
1816, 17nfan 1895 . . . . . . . . . 10 𝑚(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
19 nfv 1910 . . . . . . . . . 10 𝑚 𝑦 ∈ ℝ
2018, 19nfan 1895 . . . . . . . . 9 𝑚((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ)
21 nfv 1910 . . . . . . . . 9 𝑚𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦
2220, 21nfan 1895 . . . . . . . 8 𝑚(((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
23 fsupdm.1 . . . . . . . . . . . . 13 𝑛𝜑
24 nfii1 5030 . . . . . . . . . . . . . 14 𝑛 𝑛𝑍 dom (𝐹𝑛)
2524nfcri 2883 . . . . . . . . . . . . 13 𝑛 𝑥 𝑛𝑍 dom (𝐹𝑛)
2623, 25nfan 1895 . . . . . . . . . . . 12 𝑛(𝜑𝑥 𝑛𝑍 dom (𝐹𝑛))
27 nfv 1910 . . . . . . . . . . . 12 𝑛 𝑦 ∈ ℝ
2826, 27nfan 1895 . . . . . . . . . . 11 𝑛((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ)
29 nfra1 3272 . . . . . . . . . . 11 𝑛𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦
3028, 29nfan 1895 . . . . . . . . . 10 𝑛(((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
31 nfv 1910 . . . . . . . . . 10 𝑛 𝑚 ∈ ℕ
32 nfv 1910 . . . . . . . . . 10 𝑛 𝑦 < 𝑚
3330, 31, 32nf3an 1897 . . . . . . . . 9 𝑛((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚)
34 vex 3467 . . . . . . . . . 10 𝑥 ∈ V
3534a1i 11 . . . . . . . . 9 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) → 𝑥 ∈ V)
36 simp-4r 782 . . . . . . . . . . . . 13 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
37363ad2antl1 1182 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
38 simpr 483 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑛𝑍)
39 eliinid 44747 . . . . . . . . . . . 12 ((𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
4037, 38, 39syl2anc 582 . . . . . . . . . . 11 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
41 simp-4l 781 . . . . . . . . . . . . . . 15 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝜑)
42413ad2antl1 1182 . . . . . . . . . . . . . 14 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝜑)
43 fsupdm.5 . . . . . . . . . . . . . 14 ((𝜑𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
4442, 38, 43syl2anc 582 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
4544, 40ffvelcdmd 7089 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
46 simpllr 774 . . . . . . . . . . . . . 14 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ)
4746rexrd 11303 . . . . . . . . . . . . 13 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ*)
48473ad2antl1 1182 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑦 ∈ ℝ*)
49 simpl2 1189 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
5049nnxrd 44922 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑚 ∈ ℝ*)
51 simpl1r 1222 . . . . . . . . . . . . 13 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
52 rspa 3236 . . . . . . . . . . . . 13 ((∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝑦)
5351, 38, 52syl2anc 582 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝑦)
54 simpl3 1190 . . . . . . . . . . . 12 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑦 < 𝑚)
5545, 48, 50, 53, 54xrlelttrd 13185 . . . . . . . . . . 11 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) < 𝑚)
5640, 55rabidd 44794 . . . . . . . . . 10 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
57 trud 1544 . . . . . . . . . . . . . 14 (𝑛𝑍 → ⊤)
58 id 22 . . . . . . . . . . . . . 14 (𝑛𝑍𝑛𝑍)
59 nfcv 2892 . . . . . . . . . . . . . . 15 𝑛𝑍
60 nnex 12262 . . . . . . . . . . . . . . . . 17 ℕ ∈ V
6160mptex 7230 . . . . . . . . . . . . . . . 16 (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V
6261a1i 11 . . . . . . . . . . . . . . 15 ((⊤ ∧ 𝑛𝑍) → (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}) ∈ V)
6359, 5, 62fvmpt2df 44916 . . . . . . . . . . . . . 14 ((⊤ ∧ 𝑛𝑍) → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
6457, 58, 63syl2anc 582 . . . . . . . . . . . . 13 (𝑛𝑍 → (𝐻𝑛) = (𝑚 ∈ ℕ ↦ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚}))
65 fsupdm.4 . . . . . . . . . . . . . . . . 17 𝑥𝐹
6665, 10nffv 6901 . . . . . . . . . . . . . . . 16 𝑥(𝐹𝑛)
6766nfdm 5948 . . . . . . . . . . . . . . 15 𝑥dom (𝐹𝑛)
68 fvex 6904 . . . . . . . . . . . . . . . 16 (𝐹𝑛) ∈ V
6968dmex 7912 . . . . . . . . . . . . . . 15 dom (𝐹𝑛) ∈ V
7067, 69rabexf 44770 . . . . . . . . . . . . . 14 {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ V
7170a1i 11 . . . . . . . . . . . . 13 ((𝑛𝑍𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} ∈ V)
7264, 71fvmpt2d 7012 . . . . . . . . . . . 12 ((𝑛𝑍𝑚 ∈ ℕ) → ((𝐻𝑛)‘𝑚) = {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
7372eqcomd 2732 . . . . . . . . . . 11 ((𝑛𝑍𝑚 ∈ ℕ) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} = ((𝐻𝑛)‘𝑚))
7438, 49, 73syl2anc 582 . . . . . . . . . 10 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} = ((𝐻𝑛)‘𝑚))
7556, 74eleqtrd 2828 . . . . . . . . 9 ((((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
7633, 35, 75eliind2 44766 . . . . . . . 8 (((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) ∧ 𝑚 ∈ ℕ ∧ 𝑦 < 𝑚) → 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
77 arch 12513 . . . . . . . . 9 (𝑦 ∈ ℝ → ∃𝑚 ∈ ℕ 𝑦 < 𝑚)
7877ad2antlr 725 . . . . . . . 8 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → ∃𝑚 ∈ ℕ 𝑦 < 𝑚)
7922, 76, 78reximdd 44787 . . . . . . 7 ((((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) ∧ 𝑦 ∈ ℝ) ∧ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
8079rexlimdva2 3147 . . . . . 6 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛)) → (∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)))
81803impia 1114 . . . . 5 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
82 eliun 4998 . . . . 5 (𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ↔ ∃𝑚 ∈ ℕ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
8381, 82sylibr 233 . . . 4 ((𝜑𝑥 𝑛𝑍 dom (𝐹𝑛) ∧ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦) → 𝑥 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
842, 15, 83rabssd 44778 . . 3 (𝜑 → {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦} ⊆ 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
851, 84eqsstrid 4028 . 2 (𝜑𝐷 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
86 nfcv 2892 . . 3 𝑚𝐷
87 nfv 1910 . . . . 5 𝑥 𝑚 ∈ ℕ
882, 87nfan 1895 . . . 4 𝑥(𝜑𝑚 ∈ ℕ)
89 nfrab1 3440 . . . . 5 𝑥{𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦}
901, 89nfcxfr 2890 . . . 4 𝑥𝐷
9123, 31nfan 1895 . . . . . . . 8 𝑛(𝜑𝑚 ∈ ℕ)
92 nfii1 5030 . . . . . . . . 9 𝑛 𝑛𝑍 ((𝐻𝑛)‘𝑚)
9392nfcri 2883 . . . . . . . 8 𝑛 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)
9491, 93nfan 1895 . . . . . . 7 𝑛((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚))
9534a1i 11 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 ∈ V)
96 eliinid 44747 . . . . . . . . . 10 ((𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
9796adantll 712 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ ((𝐻𝑛)‘𝑚))
98 simpr 483 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑛𝑍)
99 simpllr 774 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑚 ∈ ℕ)
10098, 99, 72syl2anc 582 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐻𝑛)‘𝑚) = {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
10197, 100eleqtrd 2828 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚})
102 rabidim1 3442 . . . . . . . 8 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} → 𝑥 ∈ dom (𝐹𝑛))
103101, 102syl 17 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑥 ∈ dom (𝐹𝑛))
10494, 95, 103eliind2 44766 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 𝑛𝑍 dom (𝐹𝑛))
105 nnre 12263 . . . . . . . 8 (𝑚 ∈ ℕ → 𝑚 ∈ ℝ)
106105ad2antlr 725 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑚 ∈ ℝ)
107 breq2 5148 . . . . . . . . 9 (𝑦 = 𝑚 → (((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ((𝐹𝑛)‘𝑥) ≤ 𝑚))
108107ralbidv 3168 . . . . . . . 8 (𝑦 = 𝑚 → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑚))
109108adantl 480 . . . . . . 7 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑦 = 𝑚) → (∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦 ↔ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑚))
110 simplll 773 . . . . . . . . . 10 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝜑)
111433adant3 1129 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → (𝐹𝑛):dom (𝐹𝑛)⟶ℝ*)
112 simp3 1135 . . . . . . . . . . 11 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → 𝑥 ∈ dom (𝐹𝑛))
113111, 112ffvelcdmd 7089 . . . . . . . . . 10 ((𝜑𝑛𝑍𝑥 ∈ dom (𝐹𝑛)) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
114110, 98, 103, 113syl3anc 1368 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ∈ ℝ*)
11599nnxrd 44922 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → 𝑚 ∈ ℝ*)
116 rabidim2 44738 . . . . . . . . . 10 (𝑥 ∈ {𝑥 ∈ dom (𝐹𝑛) ∣ ((𝐹𝑛)‘𝑥) < 𝑚} → ((𝐹𝑛)‘𝑥) < 𝑚)
117101, 116syl 17 . . . . . . . . 9 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) < 𝑚)
118114, 115, 117xrltled 13175 . . . . . . . 8 ((((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) ∧ 𝑛𝑍) → ((𝐹𝑛)‘𝑥) ≤ 𝑚)
11994, 118ralrimia 3246 . . . . . . 7 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑚)
120106, 109, 119rspcedvd 3610 . . . . . 6 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦)
121104, 120rabidd 44794 . . . . 5 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥 ∈ {𝑥 𝑛𝑍 dom (𝐹𝑛) ∣ ∃𝑦 ∈ ℝ ∀𝑛𝑍 ((𝐹𝑛)‘𝑥) ≤ 𝑦})
122121, 1eleqtrrdi 2837 . . . 4 (((𝜑𝑚 ∈ ℕ) ∧ 𝑥 𝑛𝑍 ((𝐻𝑛)‘𝑚)) → 𝑥𝐷)
12388, 14, 90, 122ssdf2 44777 . . 3 ((𝜑𝑚 ∈ ℕ) → 𝑛𝑍 ((𝐻𝑛)‘𝑚) ⊆ 𝐷)
12416, 86, 123iunssdf 44795 . 2 (𝜑 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚) ⊆ 𝐷)
12585, 124eqssd 3997 1 (𝜑𝐷 = 𝑚 ∈ ℕ 𝑛𝑍 ((𝐻𝑛)‘𝑚))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1534  wtru 1535  wnf 1778  wcel 2099  wnfc 2876  wral 3051  wrex 3060  {crab 3420  Vcvv 3463   ciun 4994   ciin 4995   class class class wbr 5144  cmpt 5227  dom cdm 5673  wf 6540  cfv 6544  cr 11146  *cxr 11286   < clt 11287  cle 11288  cn 12256
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5281  ax-sep 5295  ax-nul 5302  ax-pow 5360  ax-pr 5424  ax-un 7736  ax-cnex 11203  ax-resscn 11204  ax-1cn 11205  ax-icn 11206  ax-addcl 11207  ax-addrcl 11208  ax-mulcl 11209  ax-mulrcl 11210  ax-mulcom 11211  ax-addass 11212  ax-mulass 11213  ax-distr 11214  ax-i2m1 11215  ax-1ne0 11216  ax-1rid 11217  ax-rnegex 11218  ax-rrecex 11219  ax-cnre 11220  ax-pre-lttri 11221  ax-pre-lttrn 11222  ax-pre-ltadd 11223  ax-pre-mulgt0 11224  ax-pre-sup 11225
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3465  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3967  df-nul 4324  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4907  df-iun 4996  df-iin 4997  df-br 5145  df-opab 5207  df-mpt 5228  df-tr 5262  df-id 5571  df-eprel 5577  df-po 5585  df-so 5586  df-fr 5628  df-we 5630  df-xp 5679  df-rel 5680  df-cnv 5681  df-co 5682  df-dm 5683  df-rn 5684  df-res 5685  df-ima 5686  df-pred 6303  df-ord 6369  df-on 6370  df-lim 6371  df-suc 6372  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7370  df-ov 7417  df-oprab 7418  df-mpo 7419  df-om 7867  df-2nd 7994  df-frecs 8286  df-wrecs 8317  df-recs 8391  df-rdg 8430  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11289  df-mnf 11290  df-xr 11291  df-ltxr 11292  df-le 11293  df-sub 11485  df-neg 11486  df-nn 12257
This theorem is referenced by:  fsupdm2  46498
  Copyright terms: Public domain W3C validator