MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ral0OLD Structured version   Visualization version   GIF version

Theorem ral0OLD 4444
Description: Obsolete version of ral0 4440 as of 2-Sep-2024. (Contributed by NM, 20-Oct-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ral0OLD 𝑥 ∈ ∅ 𝜑

Proof of Theorem ral0OLD
StepHypRef Expression
1 noel 4261 . . 3 ¬ 𝑥 ∈ ∅
21pm2.21i 119 . 2 (𝑥 ∈ ∅ → 𝜑)
32rgen 3073 1 𝑥 ∈ ∅ 𝜑
Colors of variables: wff setvar class
Syntax hints:  wcel 2108  wral 3063  c0 4253
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 396  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-dif 3886  df-nul 4254
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator