MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ral0OLD Structured version   Visualization version   GIF version

Theorem ral0OLD 4516
Description: Obsolete version of ral0 4512 as of 2-Sep-2024. (Contributed by NM, 20-Oct-2005.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
ral0OLD 𝑥 ∈ ∅ 𝜑

Proof of Theorem ral0OLD
StepHypRef Expression
1 noel 4330 . . 3 ¬ 𝑥 ∈ ∅
21pm2.21i 119 . 2 (𝑥 ∈ ∅ → 𝜑)
32rgen 3063 1 𝑥 ∈ ∅ 𝜑
Colors of variables: wff setvar class
Syntax hints:  wcel 2106  wral 3061  c0 4322
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2703
This theorem depends on definitions:  df-bi 206  df-an 397  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-dif 3951  df-nul 4323
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator