Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | raleqbidvv 3329 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2118 ax-ext 2709 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-cleq 2730 df-ral 3068 |
This theorem is referenced by: raleq 3333 isoeq4 7171 frrlem1 8073 frrlem13 8085 wfrlem1OLD 8110 wfrlem4OLD 8114 wfrlem15OLD 8125 smo11 8166 dffi2 9112 inficl 9114 dffi3 9120 dfom3 9335 aceq1 9804 dfac5lem4 9813 kmlem1 9837 kmlem10 9846 kmlem13 9849 kmlem14 9850 cofsmo 9956 infpssrlem4 9993 axdc3lem2 10138 elwina 10373 elina 10374 iswun 10391 eltskg 10437 elgrug 10479 elnp 10674 elnpi 10675 dfnn2 11916 dfnn3 11917 dfuzi 12341 coprmprod 16294 coprmproddvds 16296 ismri 17257 isprs 17930 isdrs 17934 ispos 17947 pospropd 17960 istos 18051 isdlat 18155 isipodrs 18170 mhmpropd 18351 issubm 18357 subgacs 18704 nsgacs 18705 isghm 18749 ghmeql 18772 iscmn 19309 dfrhm2 19876 islss 20111 lssacs 20144 lmhmeql 20232 islbs 20253 lbsextlem1 20335 lbsextlem3 20337 lbsextlem4 20338 isobs 20837 mat0dimcrng 21527 istopg 21952 isbasisg 22005 basis2 22009 eltg2 22016 iscldtop 22154 neipeltop 22188 isreg 22391 regsep 22393 isnrm 22394 islly 22527 isnlly 22528 llyi 22533 nllyi 22534 islly2 22543 cldllycmp 22554 isfbas 22888 fbssfi 22896 isust 23263 elutop 23293 ustuqtop 23306 utopsnneip 23308 ispsmet 23365 ismet 23384 isxmet 23385 metrest 23586 cncfval 23957 fmcfil 24341 iscfil3 24342 caucfil 24352 iscmet3 24362 cfilres 24365 minveclem3 24498 wilthlem2 26123 wilthlem3 26124 wilth 26125 dfconngr1 28453 isconngr 28454 1conngr 28459 isplig 28739 isgrpo 28760 isablo 28809 disjabrex 30822 disjabrexf 30823 isomnd 31229 isorng 31400 isrnsiga 31981 isldsys 32024 isros 32036 issros 32043 bnj1286 32899 bnj1452 32932 kur14lem9 33076 cvmscbv 33120 cvmsi 33127 cvmsval 33128 neibastop1 34475 neibastop2lem 34476 neibastop2 34477 rdgssun 35476 isbnd 35865 ismndo2 35959 rngomndo 36020 isidl 36099 ispsubsp 37686 isnacs 40442 mzpclval 40463 elmzpcl 40464 mgmhmpropd 45227 issubmgm 45231 rnghmval 45337 zrrnghm 45363 isthinc 46190 |
Copyright terms: Public domain | W3C validator |