| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
| Ref | Expression |
|---|---|
| raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | raleqbidvv 3313 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: raleqOLD 3319 isoeq4 7312 frrlem1 8283 frrlem13 8295 wfrlem1OLD 8320 wfrlem4OLD 8324 wfrlem15OLD 8335 smo11 8376 dffi2 9433 inficl 9435 dffi3 9441 dfom3 9659 aceq1 10129 dfac5lem4 10138 dfac5lem4OLD 10140 kmlem1 10163 kmlem10 10172 kmlem13 10175 kmlem14 10176 cofsmo 10281 infpssrlem4 10318 axdc3lem2 10463 elwina 10698 elina 10699 iswun 10716 eltskg 10762 elgrug 10804 elnp 10999 elnpi 11000 dfnn2 12251 dfnn3 12252 dfuzi 12682 coprmprod 16678 coprmproddvds 16680 ismri 17641 isprs 18306 isdrs 18311 ispos 18324 pospropd 18335 istos 18426 isdlat 18530 isipodrs 18545 mgmhmpropd 18674 issubmgm 18678 mhmpropd 18768 issubm 18779 subgacs 19142 nsgacs 19143 isghm 19196 isghmOLD 19197 ghmeql 19220 iscmn 19768 rnghmval 20398 dfrhm2 20432 zrrnghm 20494 islss 20889 lssacs 20922 lmhmeql 21011 islbs 21032 lbsextlem1 21117 lbsextlem3 21119 lbsextlem4 21120 isobs 21678 mat0dimcrng 22406 istopg 22831 isbasisg 22883 basis2 22887 eltg2 22894 iscldtop 23031 neipeltop 23065 isreg 23268 regsep 23270 isnrm 23271 islly 23404 isnlly 23405 llyi 23410 nllyi 23411 islly2 23420 cldllycmp 23431 isfbas 23765 fbssfi 23773 isust 24140 elutop 24170 ustuqtop 24183 utopsnneip 24185 ispsmet 24241 ismet 24260 isxmet 24261 metrest 24461 cncfval 24830 fmcfil 25222 iscfil3 25223 caucfil 25233 iscmet3 25243 cfilres 25246 minveclem3 25379 wilthlem2 27029 wilthlem3 27030 wilth 27031 dfn0s2 28253 dfconngr1 30115 isconngr 30116 1conngr 30121 isplig 30403 isgrpo 30424 isablo 30473 disjabrex 32509 disjabrexf 32510 isomnd 33015 isorng 33267 isrnsiga 34090 isldsys 34133 isros 34145 issros 34152 bnj1286 34996 bnj1452 35029 kur14lem9 35182 cvmscbv 35226 cvmsi 35233 cvmsval 35234 neibastop1 36323 neibastop2lem 36324 neibastop2 36325 rdgssun 37342 isbnd 37750 ismndo2 37844 rngomndo 37905 isidl 37984 ispsubsp 39710 sn-isghm 42643 isnacs 42674 mzpclval 42695 elmzpcl 42696 relpeq4 44920 nelsubc3lem 48985 isthinc 49253 |
| Copyright terms: Public domain | W3C validator |