| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
| Ref | Expression |
|---|---|
| raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | raleqbidvv 3300 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1541 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-cleq 2723 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: raleqOLD 3306 isoeq4 7254 frrlem1 8216 frrlem13 8228 smo11 8284 dffi2 9307 inficl 9309 dffi3 9315 dfom3 9537 aceq1 10008 dfac5lem4 10017 dfac5lem4OLD 10019 kmlem1 10042 kmlem10 10051 kmlem13 10054 kmlem14 10055 cofsmo 10160 infpssrlem4 10197 axdc3lem2 10342 elwina 10577 elina 10578 iswun 10595 eltskg 10641 elgrug 10683 elnp 10878 elnpi 10879 dfnn2 12138 dfnn3 12139 dfuzi 12564 coprmprod 16572 coprmproddvds 16574 ismri 17537 isprs 18202 isdrs 18207 ispos 18220 pospropd 18231 istos 18322 isdlat 18428 isipodrs 18443 mgmhmpropd 18606 issubmgm 18610 mhmpropd 18700 issubm 18711 subgacs 19073 nsgacs 19074 isghm 19127 isghmOLD 19128 ghmeql 19151 iscmn 19701 isomnd 20035 rnghmval 20358 dfrhm2 20392 zrrnghm 20451 isorng 20776 islss 20867 lssacs 20900 lmhmeql 20989 islbs 21010 lbsextlem1 21095 lbsextlem3 21097 lbsextlem4 21098 isobs 21657 mat0dimcrng 22385 istopg 22810 isbasisg 22862 basis2 22866 eltg2 22873 iscldtop 23010 neipeltop 23044 isreg 23247 regsep 23249 isnrm 23250 islly 23383 isnlly 23384 llyi 23389 nllyi 23390 islly2 23399 cldllycmp 23410 isfbas 23744 fbssfi 23752 isust 24119 elutop 24148 ustuqtop 24161 utopsnneip 24163 ispsmet 24219 ismet 24238 isxmet 24239 metrest 24439 cncfval 24808 fmcfil 25199 iscfil3 25200 caucfil 25210 iscmet3 25220 cfilres 25223 minveclem3 25356 wilthlem2 27006 wilthlem3 27007 wilth 27008 dfn0s2 28260 dfconngr1 30168 isconngr 30169 1conngr 30174 isplig 30456 isgrpo 30477 isablo 30526 disjabrex 32562 disjabrexf 32563 isrnsiga 34126 isldsys 34169 isros 34181 issros 34188 bnj1286 35031 bnj1452 35064 kur14lem9 35258 cvmscbv 35302 cvmsi 35309 cvmsval 35310 neibastop1 36403 neibastop2lem 36404 neibastop2 36405 rdgssun 37422 isbnd 37830 ismndo2 37924 rngomndo 37985 isidl 38064 ispsubsp 39854 sn-isghm 42776 isnacs 42807 mzpclval 42828 elmzpcl 42829 relpeq4 45050 permac8prim 45117 nelsubc3lem 49181 isthinc 49530 |
| Copyright terms: Public domain | W3C validator |