Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | raleqbidvv 3339 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∀wral 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2710 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-cleq 2731 df-ral 3070 |
This theorem is referenced by: raleq 3343 isoeq4 7200 frrlem1 8111 frrlem13 8123 wfrlem1OLD 8148 wfrlem4OLD 8152 wfrlem15OLD 8163 smo11 8204 dffi2 9191 inficl 9193 dffi3 9199 dfom3 9414 aceq1 9882 dfac5lem4 9891 kmlem1 9915 kmlem10 9924 kmlem13 9927 kmlem14 9928 cofsmo 10034 infpssrlem4 10071 axdc3lem2 10216 elwina 10451 elina 10452 iswun 10469 eltskg 10515 elgrug 10557 elnp 10752 elnpi 10753 dfnn2 11995 dfnn3 11996 dfuzi 12420 coprmprod 16375 coprmproddvds 16377 ismri 17349 isprs 18024 isdrs 18028 ispos 18041 pospropd 18054 istos 18145 isdlat 18249 isipodrs 18264 mhmpropd 18445 issubm 18451 subgacs 18798 nsgacs 18799 isghm 18843 ghmeql 18866 iscmn 19403 dfrhm2 19970 islss 20205 lssacs 20238 lmhmeql 20326 islbs 20347 lbsextlem1 20429 lbsextlem3 20431 lbsextlem4 20432 isobs 20936 mat0dimcrng 21628 istopg 22053 isbasisg 22106 basis2 22110 eltg2 22117 iscldtop 22255 neipeltop 22289 isreg 22492 regsep 22494 isnrm 22495 islly 22628 isnlly 22629 llyi 22634 nllyi 22635 islly2 22644 cldllycmp 22655 isfbas 22989 fbssfi 22997 isust 23364 elutop 23394 ustuqtop 23407 utopsnneip 23409 ispsmet 23466 ismet 23485 isxmet 23486 metrest 23689 cncfval 24060 fmcfil 24445 iscfil3 24446 caucfil 24456 iscmet3 24466 cfilres 24469 minveclem3 24602 wilthlem2 26227 wilthlem3 26228 wilth 26229 dfconngr1 28561 isconngr 28562 1conngr 28567 isplig 28847 isgrpo 28868 isablo 28917 disjabrex 30930 disjabrexf 30931 isomnd 31336 isorng 31507 isrnsiga 32090 isldsys 32133 isros 32145 issros 32152 bnj1286 33008 bnj1452 33041 kur14lem9 33185 cvmscbv 33229 cvmsi 33236 cvmsval 33237 neibastop1 34557 neibastop2lem 34558 neibastop2 34559 rdgssun 35558 isbnd 35947 ismndo2 36041 rngomndo 36102 isidl 36181 ispsubsp 37766 isnacs 40533 mzpclval 40554 elmzpcl 40555 mgmhmpropd 45350 issubmgm 45354 rnghmval 45460 zrrnghm 45486 isthinc 46313 |
Copyright terms: Public domain | W3C validator |