Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | raleqbidvv 3302 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1541 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-9 2116 ax-ext 2708 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1782 df-cleq 2729 df-ral 3063 |
This theorem is referenced by: raleq 3306 isoeq4 7251 frrlem1 8176 frrlem13 8188 wfrlem1OLD 8213 wfrlem4OLD 8217 wfrlem15OLD 8228 smo11 8269 dffi2 9284 inficl 9286 dffi3 9292 dfom3 9508 aceq1 9978 dfac5lem4 9987 kmlem1 10011 kmlem10 10020 kmlem13 10023 kmlem14 10024 cofsmo 10130 infpssrlem4 10167 axdc3lem2 10312 elwina 10547 elina 10548 iswun 10565 eltskg 10611 elgrug 10653 elnp 10848 elnpi 10849 dfnn2 12091 dfnn3 12092 dfuzi 12516 coprmprod 16463 coprmproddvds 16465 ismri 17437 isprs 18112 isdrs 18116 ispos 18129 pospropd 18142 istos 18233 isdlat 18337 isipodrs 18352 mhmpropd 18533 issubm 18539 subgacs 18885 nsgacs 18886 isghm 18930 ghmeql 18953 iscmn 19489 dfrhm2 20055 islss 20301 lssacs 20334 lmhmeql 20422 islbs 20443 lbsextlem1 20525 lbsextlem3 20527 lbsextlem4 20528 isobs 21032 mat0dimcrng 21724 istopg 22149 isbasisg 22202 basis2 22206 eltg2 22213 iscldtop 22351 neipeltop 22385 isreg 22588 regsep 22590 isnrm 22591 islly 22724 isnlly 22725 llyi 22730 nllyi 22731 islly2 22740 cldllycmp 22751 isfbas 23085 fbssfi 23093 isust 23460 elutop 23490 ustuqtop 23503 utopsnneip 23505 ispsmet 23562 ismet 23581 isxmet 23582 metrest 23785 cncfval 24156 fmcfil 24541 iscfil3 24542 caucfil 24552 iscmet3 24562 cfilres 24565 minveclem3 24698 wilthlem2 26323 wilthlem3 26324 wilth 26325 dfconngr1 28839 isconngr 28840 1conngr 28845 isplig 29125 isgrpo 29146 isablo 29195 disjabrex 31206 disjabrexf 31207 isomnd 31612 isorng 31796 isrnsiga 32377 isldsys 32420 isros 32432 issros 32439 bnj1286 33296 bnj1452 33329 kur14lem9 33473 cvmscbv 33517 cvmsi 33524 cvmsval 33525 neibastop1 34685 neibastop2lem 34686 neibastop2 34687 rdgssun 35703 isbnd 36094 ismndo2 36188 rngomndo 36249 isidl 36328 ispsubsp 38064 isnacs 40839 mzpclval 40860 elmzpcl 40861 mgmhmpropd 45757 issubmgm 45761 rnghmval 45867 zrrnghm 45893 isthinc 46720 |
Copyright terms: Public domain | W3C validator |