![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | raleqbidvv 3330 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1542 ∀wral 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-9 2117 ax-ext 2704 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-cleq 2725 df-ral 3063 df-rex 3072 |
This theorem is referenced by: raleqOLD 3336 isoeq4 7317 frrlem1 8271 frrlem13 8283 wfrlem1OLD 8308 wfrlem4OLD 8312 wfrlem15OLD 8323 smo11 8364 dffi2 9418 inficl 9420 dffi3 9426 dfom3 9642 aceq1 10112 dfac5lem4 10121 kmlem1 10145 kmlem10 10154 kmlem13 10157 kmlem14 10158 cofsmo 10264 infpssrlem4 10301 axdc3lem2 10446 elwina 10681 elina 10682 iswun 10699 eltskg 10745 elgrug 10787 elnp 10982 elnpi 10983 dfnn2 12225 dfnn3 12226 dfuzi 12653 coprmprod 16598 coprmproddvds 16600 ismri 17575 isprs 18250 isdrs 18254 ispos 18267 pospropd 18280 istos 18371 isdlat 18475 isipodrs 18490 mhmpropd 18678 issubm 18684 subgacs 19041 nsgacs 19042 isghm 19092 ghmeql 19115 iscmn 19657 dfrhm2 20253 islss 20545 lssacs 20578 lmhmeql 20666 islbs 20687 lbsextlem1 20771 lbsextlem3 20773 lbsextlem4 20774 isobs 21275 mat0dimcrng 21972 istopg 22397 isbasisg 22450 basis2 22454 eltg2 22461 iscldtop 22599 neipeltop 22633 isreg 22836 regsep 22838 isnrm 22839 islly 22972 isnlly 22973 llyi 22978 nllyi 22979 islly2 22988 cldllycmp 22999 isfbas 23333 fbssfi 23341 isust 23708 elutop 23738 ustuqtop 23751 utopsnneip 23753 ispsmet 23810 ismet 23829 isxmet 23830 metrest 24033 cncfval 24404 fmcfil 24789 iscfil3 24790 caucfil 24800 iscmet3 24810 cfilres 24813 minveclem3 24946 wilthlem2 26573 wilthlem3 26574 wilth 26575 dfconngr1 29441 isconngr 29442 1conngr 29447 isplig 29729 isgrpo 29750 isablo 29799 disjabrex 31813 disjabrexf 31814 isomnd 32219 isorng 32417 isrnsiga 33111 isldsys 33154 isros 33166 issros 33173 bnj1286 34030 bnj1452 34063 kur14lem9 34205 cvmscbv 34249 cvmsi 34256 cvmsval 34257 neibastop1 35244 neibastop2lem 35245 neibastop2 35246 rdgssun 36259 isbnd 36648 ismndo2 36742 rngomndo 36803 isidl 36882 ispsubsp 38616 isnacs 41442 mzpclval 41463 elmzpcl 41464 mgmhmpropd 46555 issubmgm 46559 rnghmval 46689 zrrnghm 46716 isthinc 47641 |
Copyright terms: Public domain | W3C validator |