![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | raleqbidvv 3342 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1537 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-cleq 2732 df-ral 3068 df-rex 3077 |
This theorem is referenced by: raleqOLD 3348 isoeq4 7356 frrlem1 8327 frrlem13 8339 wfrlem1OLD 8364 wfrlem4OLD 8368 wfrlem15OLD 8379 smo11 8420 dffi2 9492 inficl 9494 dffi3 9500 dfom3 9716 aceq1 10186 dfac5lem4 10195 dfac5lem4OLD 10197 kmlem1 10220 kmlem10 10229 kmlem13 10232 kmlem14 10233 cofsmo 10338 infpssrlem4 10375 axdc3lem2 10520 elwina 10755 elina 10756 iswun 10773 eltskg 10819 elgrug 10861 elnp 11056 elnpi 11057 dfnn2 12306 dfnn3 12307 dfuzi 12734 coprmprod 16708 coprmproddvds 16710 ismri 17689 isprs 18367 isdrs 18371 ispos 18384 pospropd 18397 istos 18488 isdlat 18592 isipodrs 18607 mgmhmpropd 18736 issubmgm 18740 mhmpropd 18827 issubm 18838 subgacs 19201 nsgacs 19202 isghm 19255 isghmOLD 19256 ghmeql 19279 iscmn 19831 rnghmval 20466 dfrhm2 20500 zrrnghm 20562 islss 20955 lssacs 20988 lmhmeql 21077 islbs 21098 lbsextlem1 21183 lbsextlem3 21185 lbsextlem4 21186 isobs 21763 mat0dimcrng 22497 istopg 22922 isbasisg 22975 basis2 22979 eltg2 22986 iscldtop 23124 neipeltop 23158 isreg 23361 regsep 23363 isnrm 23364 islly 23497 isnlly 23498 llyi 23503 nllyi 23504 islly2 23513 cldllycmp 23524 isfbas 23858 fbssfi 23866 isust 24233 elutop 24263 ustuqtop 24276 utopsnneip 24278 ispsmet 24335 ismet 24354 isxmet 24355 metrest 24558 cncfval 24933 fmcfil 25325 iscfil3 25326 caucfil 25336 iscmet3 25346 cfilres 25349 minveclem3 25482 wilthlem2 27130 wilthlem3 27131 wilth 27132 dfn0s2 28354 dfconngr1 30220 isconngr 30221 1conngr 30226 isplig 30508 isgrpo 30529 isablo 30578 disjabrex 32604 disjabrexf 32605 isomnd 33051 isorng 33294 isrnsiga 34077 isldsys 34120 isros 34132 issros 34139 bnj1286 34995 bnj1452 35028 kur14lem9 35182 cvmscbv 35226 cvmsi 35233 cvmsval 35234 neibastop1 36325 neibastop2lem 36326 neibastop2 36327 rdgssun 37344 isbnd 37740 ismndo2 37834 rngomndo 37895 isidl 37974 ispsubsp 39702 sn-isghm 42628 isnacs 42660 mzpclval 42681 elmzpcl 42682 isthinc 48688 |
Copyright terms: Public domain | W3C validator |