![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | raleqbidvv 3331 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 = wceq 1536 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-9 2115 ax-ext 2705 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1776 df-cleq 2726 df-ral 3059 df-rex 3068 |
This theorem is referenced by: raleqOLD 3337 isoeq4 7339 frrlem1 8309 frrlem13 8321 wfrlem1OLD 8346 wfrlem4OLD 8350 wfrlem15OLD 8361 smo11 8402 dffi2 9460 inficl 9462 dffi3 9468 dfom3 9684 aceq1 10154 dfac5lem4 10163 dfac5lem4OLD 10165 kmlem1 10188 kmlem10 10197 kmlem13 10200 kmlem14 10201 cofsmo 10306 infpssrlem4 10343 axdc3lem2 10488 elwina 10723 elina 10724 iswun 10741 eltskg 10787 elgrug 10829 elnp 11024 elnpi 11025 dfnn2 12276 dfnn3 12277 dfuzi 12706 coprmprod 16694 coprmproddvds 16696 ismri 17675 isprs 18353 isdrs 18358 ispos 18371 pospropd 18384 istos 18475 isdlat 18579 isipodrs 18594 mgmhmpropd 18723 issubmgm 18727 mhmpropd 18817 issubm 18828 subgacs 19191 nsgacs 19192 isghm 19245 isghmOLD 19246 ghmeql 19269 iscmn 19821 rnghmval 20456 dfrhm2 20490 zrrnghm 20552 islss 20949 lssacs 20982 lmhmeql 21071 islbs 21092 lbsextlem1 21177 lbsextlem3 21179 lbsextlem4 21180 isobs 21757 mat0dimcrng 22491 istopg 22916 isbasisg 22969 basis2 22973 eltg2 22980 iscldtop 23118 neipeltop 23152 isreg 23355 regsep 23357 isnrm 23358 islly 23491 isnlly 23492 llyi 23497 nllyi 23498 islly2 23507 cldllycmp 23518 isfbas 23852 fbssfi 23860 isust 24227 elutop 24257 ustuqtop 24270 utopsnneip 24272 ispsmet 24329 ismet 24348 isxmet 24349 metrest 24552 cncfval 24927 fmcfil 25319 iscfil3 25320 caucfil 25330 iscmet3 25340 cfilres 25343 minveclem3 25476 wilthlem2 27126 wilthlem3 27127 wilth 27128 dfn0s2 28350 dfconngr1 30216 isconngr 30217 1conngr 30222 isplig 30504 isgrpo 30525 isablo 30574 disjabrex 32601 disjabrexf 32602 isomnd 33060 isorng 33308 isrnsiga 34093 isldsys 34136 isros 34148 issros 34155 bnj1286 35011 bnj1452 35044 kur14lem9 35198 cvmscbv 35242 cvmsi 35249 cvmsval 35250 neibastop1 36341 neibastop2lem 36342 neibastop2 36343 rdgssun 37360 isbnd 37766 ismndo2 37860 rngomndo 37921 isidl 38000 ispsubsp 39727 sn-isghm 42659 isnacs 42691 mzpclval 42712 elmzpcl 42713 isthinc 48820 |
Copyright terms: Public domain | W3C validator |