| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
| Ref | Expression |
|---|---|
| raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | raleqbidvv 3297 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: raleqOLD 3303 isoeq4 7257 frrlem1 8219 frrlem13 8231 smo11 8287 dffi2 9313 inficl 9315 dffi3 9321 dfom3 9543 aceq1 10011 dfac5lem4 10020 dfac5lem4OLD 10022 kmlem1 10045 kmlem10 10054 kmlem13 10057 kmlem14 10058 cofsmo 10163 infpssrlem4 10200 axdc3lem2 10345 elwina 10580 elina 10581 iswun 10598 eltskg 10644 elgrug 10686 elnp 10881 elnpi 10882 dfnn2 12141 dfnn3 12142 dfuzi 12567 coprmprod 16572 coprmproddvds 16574 ismri 17537 isprs 18202 isdrs 18207 ispos 18220 pospropd 18231 istos 18322 isdlat 18428 isipodrs 18443 mgmhmpropd 18572 issubmgm 18576 mhmpropd 18666 issubm 18677 subgacs 19040 nsgacs 19041 isghm 19094 isghmOLD 19095 ghmeql 19118 iscmn 19668 isomnd 20002 rnghmval 20325 dfrhm2 20359 zrrnghm 20421 isorng 20746 islss 20837 lssacs 20870 lmhmeql 20959 islbs 20980 lbsextlem1 21065 lbsextlem3 21067 lbsextlem4 21068 isobs 21627 mat0dimcrng 22355 istopg 22780 isbasisg 22832 basis2 22836 eltg2 22843 iscldtop 22980 neipeltop 23014 isreg 23217 regsep 23219 isnrm 23220 islly 23353 isnlly 23354 llyi 23359 nllyi 23360 islly2 23369 cldllycmp 23380 isfbas 23714 fbssfi 23722 isust 24089 elutop 24119 ustuqtop 24132 utopsnneip 24134 ispsmet 24190 ismet 24209 isxmet 24210 metrest 24410 cncfval 24779 fmcfil 25170 iscfil3 25171 caucfil 25181 iscmet3 25191 cfilres 25194 minveclem3 25327 wilthlem2 26977 wilthlem3 26978 wilth 26979 dfn0s2 28229 dfconngr1 30132 isconngr 30133 1conngr 30138 isplig 30420 isgrpo 30441 isablo 30490 disjabrex 32526 disjabrexf 32527 isrnsiga 34086 isldsys 34129 isros 34141 issros 34148 bnj1286 34992 bnj1452 35025 kur14lem9 35197 cvmscbv 35241 cvmsi 35248 cvmsval 35249 neibastop1 36343 neibastop2lem 36344 neibastop2 36345 rdgssun 37362 isbnd 37770 ismndo2 37864 rngomndo 37925 isidl 38004 ispsubsp 39734 sn-isghm 42656 isnacs 42687 mzpclval 42708 elmzpcl 42709 relpeq4 44931 permac8prim 44998 nelsubc3lem 49065 isthinc 49414 |
| Copyright terms: Public domain | W3C validator |