| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
| Ref | Expression |
|---|---|
| raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | raleqbidvv 3307 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: raleqOLD 3313 isoeq4 7295 frrlem1 8265 frrlem13 8277 smo11 8333 dffi2 9374 inficl 9376 dffi3 9382 dfom3 9600 aceq1 10070 dfac5lem4 10079 dfac5lem4OLD 10081 kmlem1 10104 kmlem10 10113 kmlem13 10116 kmlem14 10117 cofsmo 10222 infpssrlem4 10259 axdc3lem2 10404 elwina 10639 elina 10640 iswun 10657 eltskg 10703 elgrug 10745 elnp 10940 elnpi 10941 dfnn2 12199 dfnn3 12200 dfuzi 12625 coprmprod 16631 coprmproddvds 16633 ismri 17592 isprs 18257 isdrs 18262 ispos 18275 pospropd 18286 istos 18377 isdlat 18481 isipodrs 18496 mgmhmpropd 18625 issubmgm 18629 mhmpropd 18719 issubm 18730 subgacs 19093 nsgacs 19094 isghm 19147 isghmOLD 19148 ghmeql 19171 iscmn 19719 rnghmval 20349 dfrhm2 20383 zrrnghm 20445 islss 20840 lssacs 20873 lmhmeql 20962 islbs 20983 lbsextlem1 21068 lbsextlem3 21070 lbsextlem4 21071 isobs 21629 mat0dimcrng 22357 istopg 22782 isbasisg 22834 basis2 22838 eltg2 22845 iscldtop 22982 neipeltop 23016 isreg 23219 regsep 23221 isnrm 23222 islly 23355 isnlly 23356 llyi 23361 nllyi 23362 islly2 23371 cldllycmp 23382 isfbas 23716 fbssfi 23724 isust 24091 elutop 24121 ustuqtop 24134 utopsnneip 24136 ispsmet 24192 ismet 24211 isxmet 24212 metrest 24412 cncfval 24781 fmcfil 25172 iscfil3 25173 caucfil 25183 iscmet3 25193 cfilres 25196 minveclem3 25329 wilthlem2 26979 wilthlem3 26980 wilth 26981 dfn0s2 28224 dfconngr1 30117 isconngr 30118 1conngr 30123 isplig 30405 isgrpo 30426 isablo 30475 disjabrex 32511 disjabrexf 32512 isomnd 33015 isorng 33277 isrnsiga 34103 isldsys 34146 isros 34158 issros 34165 bnj1286 35009 bnj1452 35042 kur14lem9 35201 cvmscbv 35245 cvmsi 35252 cvmsval 35253 neibastop1 36347 neibastop2lem 36348 neibastop2 36349 rdgssun 37366 isbnd 37774 ismndo2 37868 rngomndo 37929 isidl 38008 ispsubsp 39739 sn-isghm 42661 isnacs 42692 mzpclval 42713 elmzpcl 42714 relpeq4 44937 permac8prim 45004 nelsubc3lem 49059 isthinc 49408 |
| Copyright terms: Public domain | W3C validator |