| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
| Ref | Expression |
|---|---|
| raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | raleqbidvv 3304 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2721 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: raleqOLD 3310 isoeq4 7277 frrlem1 8242 frrlem13 8254 smo11 8310 dffi2 9350 inficl 9352 dffi3 9358 dfom3 9576 aceq1 10046 dfac5lem4 10055 dfac5lem4OLD 10057 kmlem1 10080 kmlem10 10089 kmlem13 10092 kmlem14 10093 cofsmo 10198 infpssrlem4 10235 axdc3lem2 10380 elwina 10615 elina 10616 iswun 10633 eltskg 10679 elgrug 10721 elnp 10916 elnpi 10917 dfnn2 12175 dfnn3 12176 dfuzi 12601 coprmprod 16607 coprmproddvds 16609 ismri 17572 isprs 18237 isdrs 18242 ispos 18255 pospropd 18266 istos 18357 isdlat 18463 isipodrs 18478 mgmhmpropd 18607 issubmgm 18611 mhmpropd 18701 issubm 18712 subgacs 19075 nsgacs 19076 isghm 19129 isghmOLD 19130 ghmeql 19153 iscmn 19703 isomnd 20037 rnghmval 20360 dfrhm2 20394 zrrnghm 20456 isorng 20781 islss 20872 lssacs 20905 lmhmeql 20994 islbs 21015 lbsextlem1 21100 lbsextlem3 21102 lbsextlem4 21103 isobs 21662 mat0dimcrng 22390 istopg 22815 isbasisg 22867 basis2 22871 eltg2 22878 iscldtop 23015 neipeltop 23049 isreg 23252 regsep 23254 isnrm 23255 islly 23388 isnlly 23389 llyi 23394 nllyi 23395 islly2 23404 cldllycmp 23415 isfbas 23749 fbssfi 23757 isust 24124 elutop 24154 ustuqtop 24167 utopsnneip 24169 ispsmet 24225 ismet 24244 isxmet 24245 metrest 24445 cncfval 24814 fmcfil 25205 iscfil3 25206 caucfil 25216 iscmet3 25226 cfilres 25229 minveclem3 25362 wilthlem2 27012 wilthlem3 27013 wilth 27014 dfn0s2 28264 dfconngr1 30167 isconngr 30168 1conngr 30173 isplig 30455 isgrpo 30476 isablo 30525 disjabrex 32561 disjabrexf 32562 isrnsiga 34096 isldsys 34139 isros 34151 issros 34158 bnj1286 35002 bnj1452 35035 kur14lem9 35194 cvmscbv 35238 cvmsi 35245 cvmsval 35246 neibastop1 36340 neibastop2lem 36341 neibastop2 36342 rdgssun 37359 isbnd 37767 ismndo2 37861 rngomndo 37922 isidl 38001 ispsubsp 39732 sn-isghm 42654 isnacs 42685 mzpclval 42706 elmzpcl 42707 relpeq4 44930 permac8prim 44997 nelsubc3lem 49052 isthinc 49401 |
| Copyright terms: Public domain | W3C validator |