| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version | ||
| Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
| Ref | Expression |
|---|---|
| raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
| 2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
| 3 | 1, 2 | raleqbidvv 3309 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∀wral 3045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-9 2119 ax-ext 2702 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2722 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: raleqOLD 3315 isoeq4 7298 frrlem1 8268 frrlem13 8280 smo11 8336 dffi2 9381 inficl 9383 dffi3 9389 dfom3 9607 aceq1 10077 dfac5lem4 10086 dfac5lem4OLD 10088 kmlem1 10111 kmlem10 10120 kmlem13 10123 kmlem14 10124 cofsmo 10229 infpssrlem4 10266 axdc3lem2 10411 elwina 10646 elina 10647 iswun 10664 eltskg 10710 elgrug 10752 elnp 10947 elnpi 10948 dfnn2 12206 dfnn3 12207 dfuzi 12632 coprmprod 16638 coprmproddvds 16640 ismri 17599 isprs 18264 isdrs 18269 ispos 18282 pospropd 18293 istos 18384 isdlat 18488 isipodrs 18503 mgmhmpropd 18632 issubmgm 18636 mhmpropd 18726 issubm 18737 subgacs 19100 nsgacs 19101 isghm 19154 isghmOLD 19155 ghmeql 19178 iscmn 19726 rnghmval 20356 dfrhm2 20390 zrrnghm 20452 islss 20847 lssacs 20880 lmhmeql 20969 islbs 20990 lbsextlem1 21075 lbsextlem3 21077 lbsextlem4 21078 isobs 21636 mat0dimcrng 22364 istopg 22789 isbasisg 22841 basis2 22845 eltg2 22852 iscldtop 22989 neipeltop 23023 isreg 23226 regsep 23228 isnrm 23229 islly 23362 isnlly 23363 llyi 23368 nllyi 23369 islly2 23378 cldllycmp 23389 isfbas 23723 fbssfi 23731 isust 24098 elutop 24128 ustuqtop 24141 utopsnneip 24143 ispsmet 24199 ismet 24218 isxmet 24219 metrest 24419 cncfval 24788 fmcfil 25179 iscfil3 25180 caucfil 25190 iscmet3 25200 cfilres 25203 minveclem3 25336 wilthlem2 26986 wilthlem3 26987 wilth 26988 dfn0s2 28231 dfconngr1 30124 isconngr 30125 1conngr 30130 isplig 30412 isgrpo 30433 isablo 30482 disjabrex 32518 disjabrexf 32519 isomnd 33022 isorng 33284 isrnsiga 34110 isldsys 34153 isros 34165 issros 34172 bnj1286 35016 bnj1452 35049 kur14lem9 35208 cvmscbv 35252 cvmsi 35259 cvmsval 35260 neibastop1 36354 neibastop2lem 36355 neibastop2 36356 rdgssun 37373 isbnd 37781 ismndo2 37875 rngomndo 37936 isidl 38015 ispsubsp 39746 sn-isghm 42668 isnacs 42699 mzpclval 42720 elmzpcl 42721 relpeq4 44944 permac8prim 45011 nelsubc3lem 49063 isthinc 49412 |
| Copyright terms: Public domain | W3C validator |