![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > raleqbi1dv | Structured version Visualization version GIF version |
Description: Equality deduction for restricted universal quantifier. (Contributed by NM, 16-Nov-1995.) (Proof shortened by Steven Nguyen, 5-May-2023.) |
Ref | Expression |
---|---|
raleqbi1dv.1 | ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
raleqbi1dv | ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | id 22 | . 2 ⊢ (𝐴 = 𝐵 → 𝐴 = 𝐵) | |
2 | raleqbi1dv.1 | . 2 ⊢ (𝐴 = 𝐵 → (𝜑 ↔ 𝜓)) | |
3 | 1, 2 | raleqbidvv 3327 | 1 ⊢ (𝐴 = 𝐵 → (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥 ∈ 𝐵 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 = wceq 1539 ∀wral 3059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-9 2114 ax-ext 2701 |
This theorem depends on definitions: df-bi 206 df-an 395 df-ex 1780 df-cleq 2722 df-ral 3060 df-rex 3069 |
This theorem is referenced by: raleqOLD 3333 isoeq4 7319 frrlem1 8273 frrlem13 8285 wfrlem1OLD 8310 wfrlem4OLD 8314 wfrlem15OLD 8325 smo11 8366 dffi2 9420 inficl 9422 dffi3 9428 dfom3 9644 aceq1 10114 dfac5lem4 10123 kmlem1 10147 kmlem10 10156 kmlem13 10159 kmlem14 10160 cofsmo 10266 infpssrlem4 10303 axdc3lem2 10448 elwina 10683 elina 10684 iswun 10701 eltskg 10747 elgrug 10789 elnp 10984 elnpi 10985 dfnn2 12229 dfnn3 12230 dfuzi 12657 coprmprod 16602 coprmproddvds 16604 ismri 17579 isprs 18254 isdrs 18258 ispos 18271 pospropd 18284 istos 18375 isdlat 18479 isipodrs 18494 mgmhmpropd 18623 issubmgm 18627 mhmpropd 18714 issubm 18720 subgacs 19077 nsgacs 19078 isghm 19130 ghmeql 19153 iscmn 19698 rnghmval 20331 dfrhm2 20365 zrrnghm 20425 islss 20689 lssacs 20722 lmhmeql 20810 islbs 20831 lbsextlem1 20916 lbsextlem3 20918 lbsextlem4 20919 isobs 21494 mat0dimcrng 22192 istopg 22617 isbasisg 22670 basis2 22674 eltg2 22681 iscldtop 22819 neipeltop 22853 isreg 23056 regsep 23058 isnrm 23059 islly 23192 isnlly 23193 llyi 23198 nllyi 23199 islly2 23208 cldllycmp 23219 isfbas 23553 fbssfi 23561 isust 23928 elutop 23958 ustuqtop 23971 utopsnneip 23973 ispsmet 24030 ismet 24049 isxmet 24050 metrest 24253 cncfval 24628 fmcfil 25020 iscfil3 25021 caucfil 25031 iscmet3 25041 cfilres 25044 minveclem3 25177 wilthlem2 26809 wilthlem3 26810 wilth 26811 dfn0s2 27941 dfconngr1 29708 isconngr 29709 1conngr 29714 isplig 29996 isgrpo 30017 isablo 30066 disjabrex 32080 disjabrexf 32081 isomnd 32489 isorng 32687 isrnsiga 33409 isldsys 33452 isros 33464 issros 33471 bnj1286 34328 bnj1452 34361 kur14lem9 34503 cvmscbv 34547 cvmsi 34554 cvmsval 34555 neibastop1 35547 neibastop2lem 35548 neibastop2 35549 rdgssun 36562 isbnd 36951 ismndo2 37045 rngomndo 37106 isidl 37185 ispsubsp 38919 isnacs 41744 mzpclval 41765 elmzpcl 41766 isthinc 47728 |
Copyright terms: Public domain | W3C validator |