MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrexbidOLD Structured version   Visualization version   GIF version

Theorem ralrexbidOLD 3256
Description: Obsolete version of ralrexbid 3255 as of 4-Nov-2024. (Contributed by AV, 21-Oct-2023.) Reduce axiom usage. (Revised by SN, 13-Nov-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ralrexbid.1 (𝜑 → (𝜓𝜃))
Assertion
Ref Expression
ralrexbidOLD (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜃))

Proof of Theorem ralrexbidOLD
StepHypRef Expression
1 df-ral 3069 . . 3 (∀𝑥𝐴 𝜑 ↔ ∀𝑥(𝑥𝐴𝜑))
2 ralrexbid.1 . . . . . 6 (𝜑 → (𝜓𝜃))
32imim2i 16 . . . . 5 ((𝑥𝐴𝜑) → (𝑥𝐴 → (𝜓𝜃)))
43pm5.32d 577 . . . 4 ((𝑥𝐴𝜑) → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜃)))
54alexbii 1835 . . 3 (∀𝑥(𝑥𝐴𝜑) → (∃𝑥(𝑥𝐴𝜓) ↔ ∃𝑥(𝑥𝐴𝜃)))
61, 5sylbi 216 . 2 (∀𝑥𝐴 𝜑 → (∃𝑥(𝑥𝐴𝜓) ↔ ∃𝑥(𝑥𝐴𝜃)))
7 df-rex 3070 . 2 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
8 df-rex 3070 . 2 (∃𝑥𝐴 𝜃 ↔ ∃𝑥(𝑥𝐴𝜃))
96, 7, 83bitr4g 314 1 (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537  wex 1782  wcel 2106  wral 3064  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-ral 3069  df-rex 3070
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator