MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrexbidOLD Structured version   Visualization version   GIF version

Theorem ralrexbidOLD 3242
Description: Obsolete version of ralrexbid 3241 as of 13-Nov-2023. (Contributed by AV, 21-Oct-2023.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
ralrexbid.1 (𝜑 → (𝜓𝜃))
Assertion
Ref Expression
ralrexbidOLD (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜃))

Proof of Theorem ralrexbidOLD
StepHypRef Expression
1 nfra1 3140 . 2 𝑥𝑥𝐴 𝜑
2 rspa 3128 . . 3 ((∀𝑥𝐴 𝜑𝑥𝐴) → 𝜑)
3 ralrexbid.1 . . 3 (𝜑 → (𝜓𝜃))
42, 3syl 17 . 2 ((∀𝑥𝐴 𝜑𝑥𝐴) → (𝜓𝜃))
51, 4rexbida 3237 1 (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wcel 2110  wral 3061  wrex 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-10 2141  ax-12 2175
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-ex 1788  df-nf 1792  df-ral 3066  df-rex 3067
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator