| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.32 573 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.32rd 578 pm5.32da 579 anbi2d 630 raltpd 4748 opeqsng 5466 dfres3 5958 cores 6225 isoini 7316 eqfunresadj 7338 mpoeq123 7464 ordpwsuc 7793 xpord3pred 8134 rdglim2 8403 fzind 12639 btwnz 12644 elfzm11 13563 isprm2 16659 isprm3 16660 modprminv 16777 modprminveq 16778 isrngim2 20369 isrimOLD 20409 bian1d 32392 elimifd 32479 indpi1 32790 xrecex 32847 ordtconnlem1 33921 dfrdg4 35946 ee7.2aOLD 36456 wl-ax11-lem8 37587 expdioph 43019 cantnf2 43321 pm14.122b 44419 rexbidar 44442 |
| Copyright terms: Public domain | W3C validator |