| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.32 573 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.32rd 578 pm5.32da 579 anbi2d 630 raltpd 4745 opeqsng 5463 dfres3 5955 cores 6222 isoini 7313 eqfunresadj 7335 mpoeq123 7461 ordpwsuc 7790 xpord3pred 8131 rdglim2 8400 fzind 12632 btwnz 12637 elfzm11 13556 isprm2 16652 isprm3 16653 modprminv 16770 modprminveq 16771 isrngim2 20362 isrimOLD 20402 bian1d 32385 elimifd 32472 indpi1 32783 xrecex 32840 ordtconnlem1 33914 dfrdg4 35939 ee7.2aOLD 36449 wl-ax11-lem8 37580 expdioph 43012 cantnf2 43314 pm14.122b 44412 rexbidar 44435 |
| Copyright terms: Public domain | W3C validator |