Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.32 574 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: pm5.32rd 578 pm5.32da 579 anbi2d 629 ralrexbidOLD 3256 raltpd 4717 opeqsng 5417 dfres3 5896 cores 6153 isoini 7209 mpoeq123 7347 ordpwsuc 7662 rdglim2 8263 fzind 12418 btwnz 12423 elfzm11 13327 isprm2 16387 isprm3 16388 modprminv 16500 modprminveq 16501 isrim 19977 elimifd 30886 xrecex 31194 ordtconnlem1 31874 indpi1 31988 eqfunresadj 33735 xpord3pred 33798 dfrdg4 34253 ee7.2aOLD 34650 wl-ax11-lem8 35743 expdioph 40845 pm14.122b 42041 rexbidar 42064 isrngim 45462 |
Copyright terms: Public domain | W3C validator |