| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.32 573 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.32rd 578 pm5.32da 579 anbi2d 630 raltpd 4735 opeqsng 5450 dfres3 5939 cores 6202 isoini 7279 eqfunresadj 7301 mpoeq123 7425 ordpwsuc 7754 xpord3pred 8092 rdglim2 8361 fzind 12592 btwnz 12597 elfzm11 13516 isprm2 16611 isprm3 16612 modprminv 16729 modprminveq 16730 isrngim2 20356 isrimOLD 20396 bian1d 32418 elimifd 32505 indpi1 32816 xrecex 32873 ordtconnlem1 33890 dfrdg4 35924 ee7.2aOLD 36434 wl-ax11-lem8 37565 expdioph 42996 cantnf2 43298 pm14.122b 44396 rexbidar 44419 |
| Copyright terms: Public domain | W3C validator |