![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.32 573 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm5.32rd 577 pm5.32da 578 anbi2d 629 ralrexbidOLD 3113 raltpd 4806 opeqsng 5522 dfres3 6014 cores 6280 isoini 7374 eqfunresadj 7396 mpoeq123 7522 ordpwsuc 7851 xpord3pred 8193 rdglim2 8488 fzind 12741 btwnz 12746 elfzm11 13655 isprm2 16729 isprm3 16730 modprminv 16846 modprminveq 16847 isrngim2 20479 isrimOLD 20519 bian1d 32484 elimifd 32566 xrecex 32884 ordtconnlem1 33870 indpi1 33984 dfrdg4 35915 ee7.2aOLD 36427 wl-ax11-lem8 37546 expdioph 42980 cantnf2 43287 pm14.122b 44392 rexbidar 44415 |
Copyright terms: Public domain | W3C validator |