| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.32 573 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.32rd 578 pm5.32da 579 anbi2d 630 raltpd 4734 opeqsng 5443 dfres3 5933 cores 6196 isoini 7272 eqfunresadj 7294 mpoeq123 7418 ordpwsuc 7745 xpord3pred 8082 rdglim2 8351 fzind 12568 btwnz 12573 elfzm11 13492 isprm2 16590 isprm3 16591 modprminv 16708 modprminveq 16709 isrngim2 20369 bian1d 32430 elimifd 32518 indpi1 32836 xrecex 32895 ordtconnlem1 33932 dfrdg4 35984 ee7.2aOLD 36494 wl-ax11-lem8 37625 expdioph 43055 cantnf2 43357 pm14.122b 44455 rexbidar 44477 |
| Copyright terms: Public domain | W3C validator |