Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.32 575 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: pm5.32rd 579 pm5.32da 580 anbi2d 630 ralrexbidOLD 3108 raltpd 4737 opeqsng 5454 dfres3 5935 cores 6194 isoini 7274 eqfunresadj 7296 mpoeq123 7418 ordpwsuc 7737 rdglim2 8342 fzind 12528 btwnz 12533 elfzm11 13437 isprm2 16489 isprm3 16490 modprminv 16602 modprminveq 16603 isrimOLD 20078 elimifd 31237 xrecex 31545 ordtconnlem1 32236 indpi1 32350 xpord3pred 34144 dfrdg4 34392 ee7.2aOLD 34789 wl-ax11-lem8 35899 expdioph 41159 pm14.122b 42414 rexbidar 42437 isrngim 45880 |
Copyright terms: Public domain | W3C validator |