MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.32d Structured version   Visualization version   GIF version

Theorem pm5.32d 576
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.)
Hypothesis
Ref Expression
pm5.32d.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
pm5.32d (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))

Proof of Theorem pm5.32d
StepHypRef Expression
1 pm5.32d.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 pm5.32 573 . 2 ((𝜓 → (𝜒𝜃)) ↔ ((𝜓𝜒) ↔ (𝜓𝜃)))
31, 2sylib 218 1 (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm5.32rd  577  pm5.32da  578  anbi2d  629  ralrexbidOLD  3113  raltpd  4806  opeqsng  5522  dfres3  6014  cores  6280  isoini  7374  eqfunresadj  7396  mpoeq123  7522  ordpwsuc  7851  xpord3pred  8193  rdglim2  8488  fzind  12741  btwnz  12746  elfzm11  13655  isprm2  16729  isprm3  16730  modprminv  16846  modprminveq  16847  isrngim2  20479  isrimOLD  20519  bian1d  32484  elimifd  32566  xrecex  32884  ordtconnlem1  33870  indpi1  33984  dfrdg4  35915  ee7.2aOLD  36427  wl-ax11-lem8  37546  expdioph  42980  cantnf2  43287  pm14.122b  44392  rexbidar  44415
  Copyright terms: Public domain W3C validator