MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pm5.32d Structured version   Visualization version   GIF version

Theorem pm5.32d 577
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.)
Hypothesis
Ref Expression
pm5.32d.1 (𝜑 → (𝜓 → (𝜒𝜃)))
Assertion
Ref Expression
pm5.32d (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))

Proof of Theorem pm5.32d
StepHypRef Expression
1 pm5.32d.1 . 2 (𝜑 → (𝜓 → (𝜒𝜃)))
2 pm5.32 573 . 2 ((𝜓 → (𝜒𝜃)) ↔ ((𝜓𝜒) ↔ (𝜓𝜃)))
31, 2sylib 218 1 (𝜑 → ((𝜓𝜒) ↔ (𝜓𝜃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8
This theorem depends on definitions:  df-bi 207  df-an 396
This theorem is referenced by:  pm5.32rd  578  pm5.32da  579  anbi2d  630  raltpd  4735  opeqsng  5450  dfres3  5939  cores  6202  isoini  7279  eqfunresadj  7301  mpoeq123  7425  ordpwsuc  7754  xpord3pred  8092  rdglim2  8361  fzind  12592  btwnz  12597  elfzm11  13516  isprm2  16611  isprm3  16612  modprminv  16729  modprminveq  16730  isrngim2  20356  isrimOLD  20396  bian1d  32418  elimifd  32505  indpi1  32816  xrecex  32873  ordtconnlem1  33890  dfrdg4  35924  ee7.2aOLD  36434  wl-ax11-lem8  37565  expdioph  42996  cantnf2  43298  pm14.122b  44396  rexbidar  44419
  Copyright terms: Public domain W3C validator