Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.32 573 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
3 | 1, 2 | sylib 217 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: pm5.32rd 577 pm5.32da 578 anbi2d 628 ralrexbidOLD 3251 raltpd 4714 opeqsng 5411 dfres3 5885 cores 6142 isoini 7189 mpoeq123 7325 ordpwsuc 7637 rdglim2 8234 fzind 12348 btwnz 12352 elfzm11 13256 isprm2 16315 isprm3 16316 modprminv 16428 modprminveq 16429 isrim 19892 elimifd 30787 xrecex 31096 ordtconnlem1 31776 indpi1 31888 eqfunresadj 33641 xpord3pred 33725 dfrdg4 34180 ee7.2aOLD 34577 wl-ax11-lem8 35670 expdioph 40761 pm14.122b 41930 rexbidar 41953 isrngim 45350 |
Copyright terms: Public domain | W3C validator |