![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.32 569 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
3 | 1, 2 | sylib 210 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 198 ∧ wa 386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 199 df-an 387 |
This theorem is referenced by: pm5.32rd 573 pm5.32da 574 anbi2d 622 raltpd 4535 opeqsng 5189 dfres3 5638 cores 5883 isoini 6848 mpt2eq123 6979 ordpwsuc 7281 rdglim2 7799 mapsnend 8307 fzind 11810 btwnz 11814 elfzm11 12712 isprm2 15774 isprm3 15775 modprminv 15882 modprminveq 15883 isrim 19096 elimifd 29906 xrecex 30169 ordtconnlem1 30511 indpi1 30623 eqfunresadj 32196 dfrdg4 32592 ee7.2aOLD 32988 wl-ax11-lem8 33908 expdioph 38428 pm14.122b 39458 rexbidar 39483 isrngim 42765 |
Copyright terms: Public domain | W3C validator |