| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.32 573 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.32rd 578 pm5.32da 579 anbi2d 630 raltpd 4757 opeqsng 5478 dfres3 5971 cores 6238 isoini 7331 eqfunresadj 7353 mpoeq123 7479 ordpwsuc 7809 xpord3pred 8151 rdglim2 8446 fzind 12691 btwnz 12696 elfzm11 13612 isprm2 16701 isprm3 16702 modprminv 16819 modprminveq 16820 isrngim2 20413 isrimOLD 20453 bian1d 32437 elimifd 32524 indpi1 32837 xrecex 32894 ordtconnlem1 33955 dfrdg4 35969 ee7.2aOLD 36479 wl-ax11-lem8 37610 expdioph 43047 cantnf2 43349 pm14.122b 44447 rexbidar 44470 |
| Copyright terms: Public domain | W3C validator |