| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version | ||
| Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
| Ref | Expression |
|---|---|
| pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
| Ref | Expression |
|---|---|
| pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
| 2 | pm5.32 573 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
| 3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: pm5.32rd 578 pm5.32da 579 anbi2d 630 raltpd 4733 opeqsng 5446 dfres3 5937 cores 6201 isoini 7278 eqfunresadj 7300 mpoeq123 7424 ordpwsuc 7751 xpord3pred 8088 rdglim2 8357 fzind 12577 btwnz 12582 elfzm11 13497 isprm2 16595 isprm3 16596 modprminv 16713 modprminveq 16714 isrngim2 20373 bian1d 32437 elimifd 32525 indpi1 32848 xrecex 32907 ordtconnlem1 33958 dfrdg4 36016 ee7.2aOLD 36526 expdioph 43140 cantnf2 43442 pm14.122b 44540 rexbidar 44562 |
| Copyright terms: Public domain | W3C validator |