![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > pm5.32d | Structured version Visualization version GIF version |
Description: Distribution of implication over biconditional (deduction form). (Contributed by NM, 29-Oct-1996.) |
Ref | Expression |
---|---|
pm5.32d.1 | ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) |
Ref | Expression |
---|---|
pm5.32d | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.32d.1 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 ↔ 𝜃))) | |
2 | pm5.32 573 | . 2 ⊢ ((𝜓 → (𝜒 ↔ 𝜃)) ↔ ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) | |
3 | 1, 2 | sylib 218 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) ↔ (𝜓 ∧ 𝜃))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: pm5.32rd 578 pm5.32da 579 anbi2d 630 ralrexbidOLD 3105 raltpd 4786 opeqsng 5513 dfres3 6005 cores 6271 isoini 7358 eqfunresadj 7380 mpoeq123 7505 ordpwsuc 7835 xpord3pred 8176 rdglim2 8471 fzind 12714 btwnz 12719 elfzm11 13632 isprm2 16716 isprm3 16717 modprminv 16833 modprminveq 16834 isrngim2 20470 isrimOLD 20510 bian1d 32484 elimifd 32564 xrecex 32887 ordtconnlem1 33885 indpi1 34001 dfrdg4 35933 ee7.2aOLD 36444 wl-ax11-lem8 37573 expdioph 43012 cantnf2 43315 pm14.122b 44419 rexbidar 44442 |
Copyright terms: Public domain | W3C validator |