|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > ralrexbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023.) Reduce axiom usage. (Revised by SN, 13-Nov-2023.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) | 
| Ref | Expression | 
|---|---|
| ralrexbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | 
| Ref | Expression | 
|---|---|
| ralrexbid | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜃)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ralrexbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 1 | ralimi 3082 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜃)) | 
| 3 | rexbi 3103 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜃) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜃)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜃)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3060 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: r19.35 3107 r19.29 3113 r19.29r 3115 dmopab2rex 5927 fiun 7968 f1iun 7969 dmopab3rexdif 35411 | 
| Copyright terms: Public domain | W3C validator |