Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrexbid | Structured version Visualization version GIF version |
Description: Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023.) Reduce axiom usage. (Revised by SN, 13-Nov-2023.) |
Ref | Expression |
---|---|
ralrexbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
Ref | Expression |
---|---|
ralrexbid | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ral 3066 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜑)) | |
2 | ralrexbid.1 | . . . . . 6 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
3 | 2 | imim2i 16 | . . . . 5 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → (𝑥 ∈ 𝐴 → (𝜓 ↔ 𝜃))) |
4 | 3 | pm5.32d 580 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 → 𝜑) → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜃))) |
5 | 4 | alexbii 1840 | . . 3 ⊢ (∀𝑥(𝑥 ∈ 𝐴 → 𝜑) → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜃))) |
6 | 1, 5 | sylbi 220 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜃))) |
7 | df-rex 3067 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
8 | df-rex 3067 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜃 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜃)) | |
9 | 6, 7, 8 | 3bitr4g 317 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1541 ∃wex 1787 ∈ wcel 2110 ∀wral 3061 ∃wrex 3062 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1788 df-ral 3066 df-rex 3067 |
This theorem is referenced by: dmopab2rex 5786 fiun 7716 f1iun 7717 dmopab3rexdif 33080 |
Copyright terms: Public domain | W3C validator |