| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrexbid | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023.) Reduce axiom usage. (Revised by SN, 13-Nov-2023.) (Proof shortened by Wolf Lammen, 4-Nov-2024.) |
| Ref | Expression |
|---|---|
| ralrexbid.1 | ⊢ (𝜑 → (𝜓 ↔ 𝜃)) |
| Ref | Expression |
|---|---|
| ralrexbid | ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrexbid.1 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜃)) | |
| 2 | 1 | ralimi 3074 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜃)) |
| 3 | rexbi 3094 | . 2 ⊢ (∀𝑥 ∈ 𝐴 (𝜓 ↔ 𝜃) → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜃)) | |
| 4 | 2, 3 | syl 17 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∀wral 3052 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-ral 3053 df-rex 3062 |
| This theorem is referenced by: r19.35 3096 r19.29 3102 r19.29r 3104 dmopab2rex 5902 fiun 7946 f1iun 7947 dmopab3rexdif 35432 |
| Copyright terms: Public domain | W3C validator |