MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrexbid Structured version   Visualization version   GIF version

Theorem ralrexbid 3112
Description: Formula-building rule for restricted existential quantifier, using a restricted universal quantifier to bind the quantified variable in the antecedent. (Contributed by AV, 21-Oct-2023.) Reduce axiom usage. (Revised by SN, 13-Nov-2023.) (Proof shortened by Wolf Lammen, 4-Nov-2024.)
Hypothesis
Ref Expression
ralrexbid.1 (𝜑 → (𝜓𝜃))
Assertion
Ref Expression
ralrexbid (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜃))

Proof of Theorem ralrexbid
StepHypRef Expression
1 ralrexbid.1 . . 3 (𝜑 → (𝜓𝜃))
21ralimi 3089 . 2 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 (𝜓𝜃))
3 rexbi 3110 . 2 (∀𝑥𝐴 (𝜓𝜃) → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜃))
42, 3syl 17 1 (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑥𝐴 𝜃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wral 3067  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-ral 3068  df-rex 3077
This theorem is referenced by:  r19.35  3114  r19.29  3120  r19.29r  3122  dmopab2rex  5942  fiun  7983  f1iun  7984  dmopab3rexdif  35373
  Copyright terms: Public domain W3C validator