![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.35 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.35 1880. (Contributed by NM, 20-Sep-2003.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
Ref | Expression |
---|---|
r19.35 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.5 361 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) | |
2 | 1 | ralrexbid 3106 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
3 | 2 | biimpcd 248 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
4 | rexnal 3100 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
5 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
6 | 5 | reximi 3084 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
7 | 4, 6 | sylbir 234 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
8 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
9 | 8 | reximi 3084 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
10 | 7, 9 | ja 186 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
11 | 3, 10 | impbii 208 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∀wral 3061 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-ral 3062 df-rex 3071 |
This theorem is referenced by: r19.43 3122 r19.37v 3181 r19.36v 3183 r19.37 3259 r19.37zv 4500 r19.36zv 4505 iinexg 5340 bndndx 12467 nmobndseqi 30019 nmobndseqiALT 30020 unielss 41952 r19.36vf 43810 |
Copyright terms: Public domain | W3C validator |