![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.35 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.35 1876. (Contributed by NM, 20-Sep-2003.) (Proof shortened by Wolf Lammen, 22-Dec-2024.) |
Ref | Expression |
---|---|
r19.35 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pm5.5 361 | . . . 4 ⊢ (𝜑 → ((𝜑 → 𝜓) ↔ 𝜓)) | |
2 | 1 | ralrexbid 3112 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝜑 → (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ∃𝑥 ∈ 𝐴 𝜓)) |
3 | 2 | biimpcd 249 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) → (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
4 | rexnal 3106 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥 ∈ 𝐴 𝜑) | |
5 | pm2.21 123 | . . . . 5 ⊢ (¬ 𝜑 → (𝜑 → 𝜓)) | |
6 | 5 | reximi 3090 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 ¬ 𝜑 → ∃𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
7 | 4, 6 | sylbir 235 | . . 3 ⊢ (¬ ∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
8 | ax-1 6 | . . . 4 ⊢ (𝜓 → (𝜑 → 𝜓)) | |
9 | 8 | reximi 3090 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
10 | 7, 9 | ja 186 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) → ∃𝑥 ∈ 𝐴 (𝜑 → 𝜓)) |
11 | 3, 10 | impbii 209 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∀wral 3067 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-ral 3068 df-rex 3077 |
This theorem is referenced by: r19.43 3128 r19.37v 3188 r19.36v 3190 r19.37 3268 r19.37zv 4525 r19.36zv 4530 iinexg 5366 bndndx 12552 nmobndseqi 30811 nmobndseqiALT 30812 unielss 43179 r19.36vf 45038 |
Copyright terms: Public domain | W3C validator |