MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.35 Structured version   Visualization version   GIF version

Theorem r19.35 3268
Description: Restricted quantifier version of 19.35 1881. (Contributed by NM, 20-Sep-2003.)
Assertion
Ref Expression
r19.35 (∃𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))

Proof of Theorem r19.35
StepHypRef Expression
1 rexim 3168 . . 3 (∀𝑥𝐴 ((𝜑𝜓) → 𝜓) → (∃𝑥𝐴 (𝜑𝜓) → ∃𝑥𝐴 𝜓))
2 pm2.27 42 . . . 4 (𝜑 → ((𝜑𝜓) → 𝜓))
32ralimi 3086 . . 3 (∀𝑥𝐴 𝜑 → ∀𝑥𝐴 ((𝜑𝜓) → 𝜓))
41, 3syl11 33 . 2 (∃𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
5 rexnal 3165 . . . 4 (∃𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴 𝜑)
6 pm2.21 123 . . . . 5 𝜑 → (𝜑𝜓))
76reximi 3174 . . . 4 (∃𝑥𝐴 ¬ 𝜑 → ∃𝑥𝐴 (𝜑𝜓))
85, 7sylbir 234 . . 3 (¬ ∀𝑥𝐴 𝜑 → ∃𝑥𝐴 (𝜑𝜓))
9 ax-1 6 . . . 4 (𝜓 → (𝜑𝜓))
109reximi 3174 . . 3 (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓))
118, 10ja 186 . 2 ((∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
124, 11impbii 208 1 (∃𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wral 3063  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-ral 3068  df-rex 3069
This theorem is referenced by:  r19.36v  3269  r19.37  3270  r19.37v  3271  r19.43  3277  r19.37zv  4429  r19.36zv  4434  iinexg  5260  bndndx  12162  nmobndseqi  29042  nmobndseqiALT  29043  r19.36vf  42574
  Copyright terms: Public domain W3C validator