MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.35 Structured version   Visualization version   GIF version

Theorem r19.35 3095
Description: Restricted quantifier version of 19.35 1877. (Contributed by NM, 20-Sep-2003.) (Proof shortened by Wolf Lammen, 22-Dec-2024.)
Assertion
Ref Expression
r19.35 (∃𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))

Proof of Theorem r19.35
StepHypRef Expression
1 pm5.5 361 . . . 4 (𝜑 → ((𝜑𝜓) ↔ 𝜓))
21ralrexbid 3094 . . 3 (∀𝑥𝐴 𝜑 → (∃𝑥𝐴 (𝜑𝜓) ↔ ∃𝑥𝐴 𝜓))
32biimpcd 249 . 2 (∃𝑥𝐴 (𝜑𝜓) → (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
4 rexnal 3089 . . . 4 (∃𝑥𝐴 ¬ 𝜑 ↔ ¬ ∀𝑥𝐴 𝜑)
5 pm2.21 123 . . . . 5 𝜑 → (𝜑𝜓))
65reximi 3074 . . . 4 (∃𝑥𝐴 ¬ 𝜑 → ∃𝑥𝐴 (𝜑𝜓))
74, 6sylbir 235 . . 3 (¬ ∀𝑥𝐴 𝜑 → ∃𝑥𝐴 (𝜑𝜓))
8 ax-1 6 . . . 4 (𝜓 → (𝜑𝜓))
98reximi 3074 . . 3 (∃𝑥𝐴 𝜓 → ∃𝑥𝐴 (𝜑𝜓))
107, 9ja 186 . 2 ((∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓) → ∃𝑥𝐴 (𝜑𝜓))
113, 10impbii 209 1 (∃𝑥𝐴 (𝜑𝜓) ↔ (∀𝑥𝐴 𝜑 → ∃𝑥𝐴 𝜓))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wral 3051  wrex 3060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-ral 3052  df-rex 3061
This theorem is referenced by:  r19.43  3108  r19.37v  3167  r19.36v  3169  r19.37  3245  r19.37zv  4477  r19.36zv  4482  iinexg  5318  bndndx  12500  nmobndseqi  30760  nmobndseqiALT  30761  unielss  43242  r19.36vf  45160
  Copyright terms: Public domain W3C validator