![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.35 | Structured version Visualization version GIF version |
Description: Restricted quantifier version of 19.35 1977. (Contributed by NM, 20-Sep-2003.) |
Ref | Expression |
---|---|
r19.35 | ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.26 3245 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | |
2 | annim 393 | . . . . 5 ⊢ ((𝜑 ∧ ¬ 𝜓) ↔ ¬ (𝜑 → 𝜓)) | |
3 | 2 | ralbii 3161 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝜑 ∧ ¬ 𝜓) ↔ ∀𝑥 ∈ 𝐴 ¬ (𝜑 → 𝜓)) |
4 | df-an 386 | . . . 4 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 ∧ ∀𝑥 ∈ 𝐴 ¬ 𝜓) ↔ ¬ (∀𝑥 ∈ 𝐴 𝜑 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) | |
5 | 1, 3, 4 | 3bitr3i 293 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝜑 → 𝜓) ↔ ¬ (∀𝑥 ∈ 𝐴 𝜑 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
6 | 5 | con2bii 349 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝜑 → 𝜓)) |
7 | dfrex2 3176 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓) | |
8 | 7 | imbi2i 328 | . 2 ⊢ ((∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜓)) |
9 | dfrex2 3176 | . 2 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ (𝜑 → 𝜓)) | |
10 | 6, 8, 9 | 3bitr4ri 296 | 1 ⊢ (∃𝑥 ∈ 𝐴 (𝜑 → 𝜓) ↔ (∀𝑥 ∈ 𝐴 𝜑 → ∃𝑥 ∈ 𝐴 𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 198 ∧ wa 385 ∀wral 3089 ∃wrex 3090 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 |
This theorem depends on definitions: df-bi 199 df-an 386 df-ex 1876 df-ral 3094 df-rex 3095 |
This theorem is referenced by: r19.36v 3266 r19.37 3267 r19.43 3274 r19.37zv 4260 r19.36zv 4265 iinexg 5016 bndndx 11579 nmobndseqi 28159 nmobndseqiALT 28160 r19.36vf 40081 |
Copyright terms: Public domain | W3C validator |