MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimdvv Structured version   Visualization version   GIF version

Theorem ralrimdvv 3124
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 1-Jun-2005.)
Hypothesis
Ref Expression
ralrimdvv.1 (𝜑 → (𝜓 → ((𝑥𝐴𝑦𝐵) → 𝜒)))
Assertion
Ref Expression
ralrimdvv (𝜑 → (𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Distinct variable groups:   𝑥,𝑦,𝜑   𝜓,𝑥,𝑦   𝑦,𝐴
Allowed substitution hints:   𝜒(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑥,𝑦)

Proof of Theorem ralrimdvv
StepHypRef Expression
1 ralrimdvv.1 . . . 4 (𝜑 → (𝜓 → ((𝑥𝐴𝑦𝐵) → 𝜒)))
21imp 407 . . 3 ((𝜑𝜓) → ((𝑥𝐴𝑦𝐵) → 𝜒))
32ralrimivv 3122 . 2 ((𝜑𝜓) → ∀𝑥𝐴𝑦𝐵 𝜒)
43ex 413 1 (𝜑 → (𝜓 → ∀𝑥𝐴𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913
This theorem depends on definitions:  df-bi 206  df-an 397  df-ral 3069
This theorem is referenced by:  ralrimdvva  3125  lspsneu  20385  pmatcoe1fsupp  21850  aalioulem4  25495  fargshiftf1  44893
  Copyright terms: Public domain W3C validator