MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgen3 Structured version   Visualization version   GIF version

Theorem rgen3 3174
Description: Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008.)
Hypothesis
Ref Expression
rgen3.1 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
Assertion
Ref Expression
rgen3 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem rgen3
StepHypRef Expression
1 rgen3.1 . . . 4 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
213expa 1118 . . 3 (((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶) → 𝜑)
32ralrimiva 3121 . 2 ((𝑥𝐴𝑦𝐵) → ∀𝑧𝐶 𝜑)
43rgen2 3169 1 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ral 3045
This theorem is referenced by:  poseq  8091  isposi  18229  efmndsgrp  18760  smndex1sgrp  18782  xrge0omnd  21352  addcnlem  24751  addscutlem  27889  zsoring  28301  isgrpoi  30442  lnocoi  30701  0lnfn  31929  lnopcoi  31947  reofld  33281  2zrngasgrp  48230  2zrngmsgrp  48237  2zrngALT  48238
  Copyright terms: Public domain W3C validator