Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rgen3 | Structured version Visualization version GIF version |
Description: Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008.) |
Ref | Expression |
---|---|
rgen3.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) |
Ref | Expression |
---|---|
rgen3 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rgen3.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) | |
2 | 1 | 3expa 1116 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜑) |
3 | 2 | ralrimiva 3107 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜑) |
4 | 3 | rgen2 3126 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 df-ral 3068 |
This theorem is referenced by: isposi 17957 efmndsgrp 18440 smndex1sgrp 18462 addcnlem 23933 isgrpoi 28761 lnocoi 29020 0lnfn 30248 lnopcoi 30266 xrge0omnd 31239 reofld 31446 poseq 33729 2zrngasgrp 45386 2zrngmsgrp 45393 2zrngALT 45394 |
Copyright terms: Public domain | W3C validator |