| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen3 | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008.) |
| Ref | Expression |
|---|---|
| rgen3.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen3 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen3.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) | |
| 2 | 1 | 3expa 1118 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜑) |
| 3 | 2 | ralrimiva 3121 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜑) |
| 4 | 3 | rgen2 3169 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ral 3045 |
| This theorem is referenced by: poseq 8091 isposi 18229 efmndsgrp 18760 smndex1sgrp 18782 xrge0omnd 21352 addcnlem 24751 addscutlem 27889 zsoring 28301 isgrpoi 30442 lnocoi 30701 0lnfn 31929 lnopcoi 31947 reofld 33281 2zrngasgrp 48230 2zrngmsgrp 48237 2zrngALT 48238 |
| Copyright terms: Public domain | W3C validator |