MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgen3 Structured version   Visualization version   GIF version

Theorem rgen3 3180
Description: Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008.)
Hypothesis
Ref Expression
rgen3.1 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
Assertion
Ref Expression
rgen3 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem rgen3
StepHypRef Expression
1 rgen3.1 . . . 4 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
213expa 1118 . . 3 (((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶) → 𝜑)
32ralrimiva 3125 . 2 ((𝑥𝐴𝑦𝐵) → ∀𝑧𝐶 𝜑)
43rgen2 3175 1 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  wral 3044
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910
This theorem depends on definitions:  df-bi 207  df-an 396  df-3an 1088  df-ral 3045
This theorem is referenced by:  poseq  8114  isposi  18260  efmndsgrp  18789  smndex1sgrp  18811  addcnlem  24729  addscutlem  27860  isgrpoi  30400  lnocoi  30659  0lnfn  31887  lnopcoi  31905  xrge0omnd  32998  reofld  33288  2zrngasgrp  48207  2zrngmsgrp  48214  2zrngALT  48215
  Copyright terms: Public domain W3C validator