MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rgen3 Structured version   Visualization version   GIF version

Theorem rgen3 3130
Description: Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008.)
Hypothesis
Ref Expression
rgen3.1 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
Assertion
Ref Expression
rgen3 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
Distinct variable groups:   𝑦,𝑧,𝐴   𝑧,𝐵   𝑥,𝑦,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧)   𝐴(𝑥)   𝐵(𝑥,𝑦)   𝐶(𝑥,𝑦,𝑧)

Proof of Theorem rgen3
StepHypRef Expression
1 rgen3.1 . . . 4 ((𝑥𝐴𝑦𝐵𝑧𝐶) → 𝜑)
213expa 1117 . . 3 (((𝑥𝐴𝑦𝐵) ∧ 𝑧𝐶) → 𝜑)
32ralrimiva 3110 . 2 ((𝑥𝐴𝑦𝐵) → ∀𝑧𝐶 𝜑)
43rgen2 3129 1 𝑥𝐴𝑦𝐵𝑧𝐶 𝜑
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1086  wcel 2110  wral 3066
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917
This theorem depends on definitions:  df-bi 206  df-an 397  df-3an 1088  df-ral 3071
This theorem is referenced by:  isposi  18040  efmndsgrp  18523  smndex1sgrp  18545  addcnlem  24025  isgrpoi  28856  lnocoi  29115  0lnfn  30343  lnopcoi  30361  xrge0omnd  31333  reofld  31540  poseq  33798  2zrngasgrp  45467  2zrngmsgrp  45474  2zrngALT  45475
  Copyright terms: Public domain W3C validator