| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rgen3 | Structured version Visualization version GIF version | ||
| Description: Generalization rule for restricted quantification, with three quantifiers. (Contributed by NM, 12-Jan-2008.) |
| Ref | Expression |
|---|---|
| rgen3.1 | ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) |
| Ref | Expression |
|---|---|
| rgen3 | ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rgen3.1 | . . . 4 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵 ∧ 𝑧 ∈ 𝐶) → 𝜑) | |
| 2 | 1 | 3expa 1118 | . . 3 ⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) ∧ 𝑧 ∈ 𝐶) → 𝜑) |
| 3 | 2 | ralrimiva 3124 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → ∀𝑧 ∈ 𝐶 𝜑) |
| 4 | 3 | rgen2 3172 | 1 ⊢ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 ∀𝑧 ∈ 𝐶 𝜑 |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 df-ral 3048 |
| This theorem is referenced by: poseq 8088 isposi 18229 efmndsgrp 18794 smndex1sgrp 18816 xrge0omnd 21382 addcnlem 24780 addscutlem 27920 zsoring 28332 isgrpoi 30478 lnocoi 30737 0lnfn 31965 lnopcoi 31983 reofld 33308 2zrngasgrp 48285 2zrngmsgrp 48292 2zrngALT 48293 |
| Copyright terms: Public domain | W3C validator |