MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem4 Structured version   Visualization version   GIF version

Theorem aalioulem4 26241
Description: Lemma for aaliou 26244. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem4 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞
Allowed substitution hints:   𝑁(𝑥,𝑞,𝑝)

Proof of Theorem aalioulem4
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3 𝑁 = (deg‘𝐹)
2 aalioulem2.b . . 3 (𝜑𝐹 ∈ (Poly‘ℤ))
3 aalioulem2.c . . 3 (𝜑𝑁 ∈ ℕ)
4 aalioulem2.d . . 3 (𝜑𝐴 ∈ ℝ)
5 aalioulem3.e . . 3 (𝜑 → (𝐹𝐴) = 0)
61, 2, 3, 4, 5aalioulem3 26240 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))))
7 simp2l 1200 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑝 ∈ ℤ)
8 simp2r 1201 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑞 ∈ ℕ)
9 znq 12853 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
107, 8, 9syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℚ)
11 qre 12854 . . . . . . . . . 10 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
1210, 11syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℝ)
13 simp3r 1203 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)
14 oveq2 7357 . . . . . . . . . . . . . 14 (𝑎 = (𝑝 / 𝑞) → (𝐴𝑎) = (𝐴 − (𝑝 / 𝑞)))
1514fveq2d 6826 . . . . . . . . . . . . 13 (𝑎 = (𝑝 / 𝑞) → (abs‘(𝐴𝑎)) = (abs‘(𝐴 − (𝑝 / 𝑞))))
1615breq1d 5102 . . . . . . . . . . . 12 (𝑎 = (𝑝 / 𝑞) → ((abs‘(𝐴𝑎)) ≤ 1 ↔ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1))
17 2fveq3 6827 . . . . . . . . . . . . . 14 (𝑎 = (𝑝 / 𝑞) → (abs‘(𝐹𝑎)) = (abs‘(𝐹‘(𝑝 / 𝑞))))
1817oveq2d 7365 . . . . . . . . . . . . 13 (𝑎 = (𝑝 / 𝑞) → (𝑥 · (abs‘(𝐹𝑎))) = (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
1918, 15breq12d 5105 . . . . . . . . . . . 12 (𝑎 = (𝑝 / 𝑞) → ((𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎)) ↔ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
2016, 19imbi12d 344 . . . . . . . . . . 11 (𝑎 = (𝑝 / 𝑞) → (((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) ↔ ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
2120rspcv 3573 . . . . . . . . . 10 ((𝑝 / 𝑞) ∈ ℝ → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
2221com23 86 . . . . . . . . 9 ((𝑝 / 𝑞) ∈ ℝ → ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
2312, 13, 22sylc 65 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
24 simp1r 1199 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℝ+)
258nnrpd 12935 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑞 ∈ ℝ+)
26 simp1l 1198 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝜑)
2726, 3syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑁 ∈ ℕ)
2827nnzd 12498 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑁 ∈ ℤ)
2925, 28rpexpcld 14154 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ∈ ℝ+)
3024, 29rpdivcld 12954 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) ∈ ℝ+)
3130rpred 12937 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
3231adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
3324rpred 12937 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℝ)
3426, 2syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐹 ∈ (Poly‘ℤ))
35 plyf 26101 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Poly‘ℤ) → 𝐹:ℂ⟶ℂ)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐹:ℂ⟶ℂ)
3712recnd 11143 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℂ)
3836, 37ffvelcdmd 7019 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐹‘(𝑝 / 𝑞)) ∈ ℂ)
3938abscld 15346 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐹‘(𝑝 / 𝑞))) ∈ ℝ)
4033, 39remulcld 11145 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℝ)
4140adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℝ)
4226, 4syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐴 ∈ ℝ)
4342, 12resubcld 11548 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
4443recnd 11143 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
4544abscld 15346 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
4645adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
4724rpcnd 12939 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℂ)
4829rpcnd 12939 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ∈ ℂ)
4929rpne0d 12942 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ≠ 0)
5047, 48, 49divrecd 11903 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) = (𝑥 · (1 / (𝑞𝑁))))
5148, 38absmuld 15364 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) = ((abs‘(𝑞𝑁)) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
5229rpred 12937 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ∈ ℝ)
5329rpge0d 12941 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 0 ≤ (𝑞𝑁))
5452, 53absidd 15330 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝑞𝑁)) = (𝑞𝑁))
5554oveq1d 7364 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((abs‘(𝑞𝑁)) · (abs‘(𝐹‘(𝑝 / 𝑞)))) = ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
5651, 55eqtrd 2764 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) = ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
5748, 38mulcomd 11136 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞𝑁)))
581oveq2i 7360 . . . . . . . . . . . . . . . . . . . . 21 (𝑞𝑁) = (𝑞↑(deg‘𝐹))
5958oveq2i 7360 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝑝 / 𝑞)) · (𝑞𝑁)) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹)))
6057, 59eqtrdi 2780 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹))))
6134, 7, 8aalioulem1 26238 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹))) ∈ ℤ)
6260, 61eqeltrd 2828 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ∈ ℤ)
63 simp3l 1202 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐹‘(𝑝 / 𝑞)) ≠ 0)
6448, 38, 49, 63mulne0d 11772 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ≠ 0)
65 nnabscl 15233 . . . . . . . . . . . . . . . . . 18 ((((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ∈ ℤ ∧ ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ≠ 0) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) ∈ ℕ)
6662, 64, 65syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) ∈ ℕ)
6756, 66eqeltrrd 2829 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℕ)
6867nnge1d 12176 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 1 ≤ ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
69 1red 11116 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 1 ∈ ℝ)
7069, 39, 29ledivmuld 12990 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((1 / (𝑞𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))) ↔ 1 ≤ ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞))))))
7168, 70mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (1 / (𝑞𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))))
7229rprecred 12948 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (1 / (𝑞𝑁)) ∈ ℝ)
7372, 39, 24lemul2d 12981 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((1 / (𝑞𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))) ↔ (𝑥 · (1 / (𝑞𝑁))) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞))))))
7471, 73mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 · (1 / (𝑞𝑁))) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
7550, 74eqbrtrd 5114 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
7675adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
77 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
7832, 41, 46, 76, 77letrd 11273 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
7978olcd 874 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
8079ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
8123, 80syld 47 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
82813exp 1119 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))))
8382com34 91 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))))
8483com23 86 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))))
8584ralrimdvv 3173 . . 3 ((𝜑𝑥 ∈ ℝ+) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
8685reximdva 3142 . 2 (𝜑 → (∃𝑥 ∈ ℝ+𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
876, 86mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wrex 3053   class class class wbr 5092  wf 6478  cfv 6482  (class class class)co 7349  cc 11007  cr 11008  0cc0 11009  1c1 11010   · cmul 11014  cle 11150  cmin 11347   / cdiv 11777  cn 12128  cz 12471  cq 12849  +crp 12893  cexp 13968  abscabs 15141  Polycply 26087  degcdgr 26090
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-inf2 9537  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-pm 8756  df-ixp 8825  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-fi 9301  df-sup 9332  df-inf 9333  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-ioo 13252  df-ico 13254  df-icc 13255  df-fz 13411  df-fzo 13558  df-fl 13696  df-seq 13909  df-exp 13969  df-hash 14238  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-clim 15395  df-rlim 15396  df-sum 15594  df-struct 17058  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-mulr 17175  df-starv 17176  df-sca 17177  df-vsca 17178  df-ip 17179  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-hom 17185  df-cco 17186  df-rest 17326  df-topn 17327  df-0g 17345  df-gsum 17346  df-topgen 17347  df-pt 17348  df-prds 17351  df-xrs 17406  df-qtop 17411  df-imas 17412  df-xps 17414  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-subg 19002  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-ring 20120  df-cring 20121  df-subrng 20431  df-subrg 20455  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-fbas 21258  df-fg 21259  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cld 22904  df-ntr 22905  df-cls 22906  df-nei 22983  df-lp 23021  df-perf 23022  df-cn 23112  df-cnp 23113  df-haus 23200  df-cmp 23272  df-tx 23447  df-hmeo 23640  df-fil 23731  df-fm 23823  df-flim 23824  df-flf 23825  df-xms 24206  df-ms 24207  df-tms 24208  df-cncf 24769  df-0p 25569  df-limc 25765  df-dv 25766  df-dvn 25767  df-cpn 25768  df-ply 26091  df-coe 26093  df-dgr 26094
This theorem is referenced by:  aalioulem5  26242
  Copyright terms: Public domain W3C validator