MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem4 Structured version   Visualization version   GIF version

Theorem aalioulem4 26300
Description: Lemma for aaliou 26303. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem4 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞
Allowed substitution hints:   𝑁(𝑥,𝑞,𝑝)

Proof of Theorem aalioulem4
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3 𝑁 = (deg‘𝐹)
2 aalioulem2.b . . 3 (𝜑𝐹 ∈ (Poly‘ℤ))
3 aalioulem2.c . . 3 (𝜑𝑁 ∈ ℕ)
4 aalioulem2.d . . 3 (𝜑𝐴 ∈ ℝ)
5 aalioulem3.e . . 3 (𝜑 → (𝐹𝐴) = 0)
61, 2, 3, 4, 5aalioulem3 26299 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))))
7 simp2l 1200 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑝 ∈ ℤ)
8 simp2r 1201 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑞 ∈ ℕ)
9 znq 12973 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
107, 8, 9syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℚ)
11 qre 12974 . . . . . . . . . 10 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
1210, 11syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℝ)
13 simp3r 1203 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)
14 oveq2 7418 . . . . . . . . . . . . . 14 (𝑎 = (𝑝 / 𝑞) → (𝐴𝑎) = (𝐴 − (𝑝 / 𝑞)))
1514fveq2d 6885 . . . . . . . . . . . . 13 (𝑎 = (𝑝 / 𝑞) → (abs‘(𝐴𝑎)) = (abs‘(𝐴 − (𝑝 / 𝑞))))
1615breq1d 5134 . . . . . . . . . . . 12 (𝑎 = (𝑝 / 𝑞) → ((abs‘(𝐴𝑎)) ≤ 1 ↔ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1))
17 2fveq3 6886 . . . . . . . . . . . . . 14 (𝑎 = (𝑝 / 𝑞) → (abs‘(𝐹𝑎)) = (abs‘(𝐹‘(𝑝 / 𝑞))))
1817oveq2d 7426 . . . . . . . . . . . . 13 (𝑎 = (𝑝 / 𝑞) → (𝑥 · (abs‘(𝐹𝑎))) = (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
1918, 15breq12d 5137 . . . . . . . . . . . 12 (𝑎 = (𝑝 / 𝑞) → ((𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎)) ↔ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
2016, 19imbi12d 344 . . . . . . . . . . 11 (𝑎 = (𝑝 / 𝑞) → (((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) ↔ ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
2120rspcv 3602 . . . . . . . . . 10 ((𝑝 / 𝑞) ∈ ℝ → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
2221com23 86 . . . . . . . . 9 ((𝑝 / 𝑞) ∈ ℝ → ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
2312, 13, 22sylc 65 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
24 simp1r 1199 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℝ+)
258nnrpd 13054 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑞 ∈ ℝ+)
26 simp1l 1198 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝜑)
2726, 3syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑁 ∈ ℕ)
2827nnzd 12620 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑁 ∈ ℤ)
2925, 28rpexpcld 14270 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ∈ ℝ+)
3024, 29rpdivcld 13073 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) ∈ ℝ+)
3130rpred 13056 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
3231adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
3324rpred 13056 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℝ)
3426, 2syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐹 ∈ (Poly‘ℤ))
35 plyf 26160 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Poly‘ℤ) → 𝐹:ℂ⟶ℂ)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐹:ℂ⟶ℂ)
3712recnd 11268 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℂ)
3836, 37ffvelcdmd 7080 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐹‘(𝑝 / 𝑞)) ∈ ℂ)
3938abscld 15460 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐹‘(𝑝 / 𝑞))) ∈ ℝ)
4033, 39remulcld 11270 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℝ)
4140adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℝ)
4226, 4syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐴 ∈ ℝ)
4342, 12resubcld 11670 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
4443recnd 11268 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
4544abscld 15460 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
4645adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
4724rpcnd 13058 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℂ)
4829rpcnd 13058 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ∈ ℂ)
4929rpne0d 13061 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ≠ 0)
5047, 48, 49divrecd 12025 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) = (𝑥 · (1 / (𝑞𝑁))))
5148, 38absmuld 15478 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) = ((abs‘(𝑞𝑁)) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
5229rpred 13056 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ∈ ℝ)
5329rpge0d 13060 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 0 ≤ (𝑞𝑁))
5452, 53absidd 15446 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝑞𝑁)) = (𝑞𝑁))
5554oveq1d 7425 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((abs‘(𝑞𝑁)) · (abs‘(𝐹‘(𝑝 / 𝑞)))) = ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
5651, 55eqtrd 2771 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) = ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
5748, 38mulcomd 11261 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞𝑁)))
581oveq2i 7421 . . . . . . . . . . . . . . . . . . . . 21 (𝑞𝑁) = (𝑞↑(deg‘𝐹))
5958oveq2i 7421 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝑝 / 𝑞)) · (𝑞𝑁)) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹)))
6057, 59eqtrdi 2787 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹))))
6134, 7, 8aalioulem1 26297 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹))) ∈ ℤ)
6260, 61eqeltrd 2835 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ∈ ℤ)
63 simp3l 1202 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐹‘(𝑝 / 𝑞)) ≠ 0)
6448, 38, 49, 63mulne0d 11894 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ≠ 0)
65 nnabscl 15349 . . . . . . . . . . . . . . . . . 18 ((((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ∈ ℤ ∧ ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ≠ 0) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) ∈ ℕ)
6662, 64, 65syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) ∈ ℕ)
6756, 66eqeltrrd 2836 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℕ)
6867nnge1d 12293 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 1 ≤ ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
69 1red 11241 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 1 ∈ ℝ)
7069, 39, 29ledivmuld 13109 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((1 / (𝑞𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))) ↔ 1 ≤ ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞))))))
7168, 70mpbird 257 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (1 / (𝑞𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))))
7229rprecred 13067 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (1 / (𝑞𝑁)) ∈ ℝ)
7372, 39, 24lemul2d 13100 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((1 / (𝑞𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))) ↔ (𝑥 · (1 / (𝑞𝑁))) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞))))))
7471, 73mpbid 232 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 · (1 / (𝑞𝑁))) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
7550, 74eqbrtrd 5146 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
7675adantr 480 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
77 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
7832, 41, 46, 76, 77letrd 11397 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
7978olcd 874 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
8079ex 412 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
8123, 80syld 47 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
82813exp 1119 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))))
8382com34 91 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))))
8483com23 86 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))))
8584ralrimdvv 3189 . . 3 ((𝜑𝑥 ∈ ℝ+) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
8685reximdva 3154 . 2 (𝜑 → (∃𝑥 ∈ ℝ+𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
876, 86mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2109  wne 2933  wral 3052  wrex 3061   class class class wbr 5124  wf 6532  cfv 6536  (class class class)co 7410  cc 11132  cr 11133  0cc0 11134  1c1 11135   · cmul 11139  cle 11275  cmin 11471   / cdiv 11899  cn 12245  cz 12593  cq 12969  +crp 13013  cexp 14084  abscabs 15258  Polycply 26146  degcdgr 26149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-inf2 9660  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212  ax-addf 11213
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-se 5612  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-isom 6545  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-of 7676  df-om 7867  df-1st 7993  df-2nd 7994  df-supp 8165  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-2o 8486  df-er 8724  df-map 8847  df-pm 8848  df-ixp 8917  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-fsupp 9379  df-fi 9428  df-sup 9459  df-inf 9460  df-oi 9529  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-q 12970  df-rp 13014  df-xneg 13133  df-xadd 13134  df-xmul 13135  df-ioo 13371  df-ico 13373  df-icc 13374  df-fz 13530  df-fzo 13677  df-fl 13814  df-seq 14025  df-exp 14085  df-hash 14354  df-cj 15123  df-re 15124  df-im 15125  df-sqrt 15259  df-abs 15260  df-clim 15509  df-rlim 15510  df-sum 15708  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-starv 17291  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-unif 17299  df-hom 17300  df-cco 17301  df-rest 17441  df-topn 17442  df-0g 17460  df-gsum 17461  df-topgen 17462  df-pt 17463  df-prds 17466  df-xrs 17521  df-qtop 17526  df-imas 17527  df-xps 17529  df-mre 17603  df-mrc 17604  df-acs 17606  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-submnd 18767  df-grp 18924  df-minusg 18925  df-mulg 19056  df-subg 19111  df-cntz 19305  df-cmn 19768  df-abl 19769  df-mgp 20106  df-rng 20118  df-ur 20147  df-ring 20200  df-cring 20201  df-subrng 20511  df-subrg 20535  df-psmet 21312  df-xmet 21313  df-met 21314  df-bl 21315  df-mopn 21316  df-fbas 21317  df-fg 21318  df-cnfld 21321  df-top 22837  df-topon 22854  df-topsp 22876  df-bases 22889  df-cld 22962  df-ntr 22963  df-cls 22964  df-nei 23041  df-lp 23079  df-perf 23080  df-cn 23170  df-cnp 23171  df-haus 23258  df-cmp 23330  df-tx 23505  df-hmeo 23698  df-fil 23789  df-fm 23881  df-flim 23882  df-flf 23883  df-xms 24264  df-ms 24265  df-tms 24266  df-cncf 24827  df-0p 25628  df-limc 25824  df-dv 25825  df-dvn 25826  df-cpn 25827  df-ply 26150  df-coe 26152  df-dgr 26153
This theorem is referenced by:  aalioulem5  26301
  Copyright terms: Public domain W3C validator