MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  aalioulem4 Structured version   Visualization version   GIF version

Theorem aalioulem4 25695
Description: Lemma for aaliou 25698. (Contributed by Stefan O'Rear, 16-Nov-2014.)
Hypotheses
Ref Expression
aalioulem2.a 𝑁 = (deg‘𝐹)
aalioulem2.b (𝜑𝐹 ∈ (Poly‘ℤ))
aalioulem2.c (𝜑𝑁 ∈ ℕ)
aalioulem2.d (𝜑𝐴 ∈ ℝ)
aalioulem3.e (𝜑 → (𝐹𝐴) = 0)
Assertion
Ref Expression
aalioulem4 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Distinct variable groups:   𝜑,𝑥,𝑝,𝑞   𝑥,𝐴,𝑝,𝑞   𝑥,𝐹,𝑝,𝑞
Allowed substitution hints:   𝑁(𝑥,𝑞,𝑝)

Proof of Theorem aalioulem4
Dummy variable 𝑎 is distinct from all other variables.
StepHypRef Expression
1 aalioulem2.a . . 3 𝑁 = (deg‘𝐹)
2 aalioulem2.b . . 3 (𝜑𝐹 ∈ (Poly‘ℤ))
3 aalioulem2.c . . 3 (𝜑𝑁 ∈ ℕ)
4 aalioulem2.d . . 3 (𝜑𝐴 ∈ ℝ)
5 aalioulem3.e . . 3 (𝜑 → (𝐹𝐴) = 0)
61, 2, 3, 4, 5aalioulem3 25694 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))))
7 simp2l 1199 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑝 ∈ ℤ)
8 simp2r 1200 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑞 ∈ ℕ)
9 znq 12877 . . . . . . . . . . 11 ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ)
107, 8, 9syl2anc 584 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℚ)
11 qre 12878 . . . . . . . . . 10 ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ)
1210, 11syl 17 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℝ)
13 simp3r 1202 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)
14 oveq2 7365 . . . . . . . . . . . . . 14 (𝑎 = (𝑝 / 𝑞) → (𝐴𝑎) = (𝐴 − (𝑝 / 𝑞)))
1514fveq2d 6846 . . . . . . . . . . . . 13 (𝑎 = (𝑝 / 𝑞) → (abs‘(𝐴𝑎)) = (abs‘(𝐴 − (𝑝 / 𝑞))))
1615breq1d 5115 . . . . . . . . . . . 12 (𝑎 = (𝑝 / 𝑞) → ((abs‘(𝐴𝑎)) ≤ 1 ↔ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1))
17 2fveq3 6847 . . . . . . . . . . . . . 14 (𝑎 = (𝑝 / 𝑞) → (abs‘(𝐹𝑎)) = (abs‘(𝐹‘(𝑝 / 𝑞))))
1817oveq2d 7373 . . . . . . . . . . . . 13 (𝑎 = (𝑝 / 𝑞) → (𝑥 · (abs‘(𝐹𝑎))) = (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
1918, 15breq12d 5118 . . . . . . . . . . . 12 (𝑎 = (𝑝 / 𝑞) → ((𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎)) ↔ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
2016, 19imbi12d 344 . . . . . . . . . . 11 (𝑎 = (𝑝 / 𝑞) → (((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) ↔ ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
2120rspcv 3577 . . . . . . . . . 10 ((𝑝 / 𝑞) ∈ ℝ → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
2221com23 86 . . . . . . . . 9 ((𝑝 / 𝑞) ∈ ℝ → ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
2312, 13, 22sylc 65 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
24 simp1r 1198 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℝ+)
258nnrpd 12955 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑞 ∈ ℝ+)
26 simp1l 1197 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝜑)
2726, 3syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑁 ∈ ℕ)
2827nnzd 12526 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑁 ∈ ℤ)
2925, 28rpexpcld 14150 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ∈ ℝ+)
3024, 29rpdivcld 12974 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) ∈ ℝ+)
3130rpred 12957 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
3231adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ∈ ℝ)
3324rpred 12957 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℝ)
3426, 2syl 17 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐹 ∈ (Poly‘ℤ))
35 plyf 25559 . . . . . . . . . . . . . . . 16 (𝐹 ∈ (Poly‘ℤ) → 𝐹:ℂ⟶ℂ)
3634, 35syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐹:ℂ⟶ℂ)
3712recnd 11183 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℂ)
3836, 37ffvelcdmd 7036 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐹‘(𝑝 / 𝑞)) ∈ ℂ)
3938abscld 15321 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐹‘(𝑝 / 𝑞))) ∈ ℝ)
4033, 39remulcld 11185 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℝ)
4140adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℝ)
4226, 4syl 17 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐴 ∈ ℝ)
4342, 12resubcld 11583 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ)
4443recnd 11183 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ)
4544abscld 15321 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
4645adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ)
4724rpcnd 12959 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℂ)
4829rpcnd 12959 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ∈ ℂ)
4929rpne0d 12962 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ≠ 0)
5047, 48, 49divrecd 11934 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) = (𝑥 · (1 / (𝑞𝑁))))
5148, 38absmuld 15339 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) = ((abs‘(𝑞𝑁)) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
5229rpred 12957 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞𝑁) ∈ ℝ)
5329rpge0d 12961 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 0 ≤ (𝑞𝑁))
5452, 53absidd 15307 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝑞𝑁)) = (𝑞𝑁))
5554oveq1d 7372 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((abs‘(𝑞𝑁)) · (abs‘(𝐹‘(𝑝 / 𝑞)))) = ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
5651, 55eqtrd 2776 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) = ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
5748, 38mulcomd 11176 . . . . . . . . . . . . . . . . . . . 20 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞𝑁)))
581oveq2i 7368 . . . . . . . . . . . . . . . . . . . . 21 (𝑞𝑁) = (𝑞↑(deg‘𝐹))
5958oveq2i 7368 . . . . . . . . . . . . . . . . . . . 20 ((𝐹‘(𝑝 / 𝑞)) · (𝑞𝑁)) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹)))
6057, 59eqtrdi 2792 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹))))
6134, 7, 8aalioulem1 25692 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹))) ∈ ℤ)
6260, 61eqeltrd 2838 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ∈ ℤ)
63 simp3l 1201 . . . . . . . . . . . . . . . . . . 19 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐹‘(𝑝 / 𝑞)) ≠ 0)
6448, 38, 49, 63mulne0d 11807 . . . . . . . . . . . . . . . . . 18 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ≠ 0)
65 nnabscl 15210 . . . . . . . . . . . . . . . . . 18 ((((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ∈ ℤ ∧ ((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞))) ≠ 0) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) ∈ ℕ)
6662, 64, 65syl2anc 584 . . . . . . . . . . . . . . . . 17 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞𝑁) · (𝐹‘(𝑝 / 𝑞)))) ∈ ℕ)
6756, 66eqeltrrd 2839 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℕ)
6867nnge1d 12201 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 1 ≤ ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))))
69 1red 11156 . . . . . . . . . . . . . . . 16 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 1 ∈ ℝ)
7069, 39, 29ledivmuld 13010 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((1 / (𝑞𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))) ↔ 1 ≤ ((𝑞𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞))))))
7168, 70mpbird 256 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (1 / (𝑞𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))))
7229rprecred 12968 . . . . . . . . . . . . . . 15 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (1 / (𝑞𝑁)) ∈ ℝ)
7372, 39, 24lemul2d 13001 . . . . . . . . . . . . . 14 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((1 / (𝑞𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))) ↔ (𝑥 · (1 / (𝑞𝑁))) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞))))))
7471, 73mpbid 231 . . . . . . . . . . . . 13 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 · (1 / (𝑞𝑁))) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
7550, 74eqbrtrd 5127 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞𝑁)) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
7675adantr 481 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))
77 simpr 485 . . . . . . . . . . 11 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
7832, 41, 46, 76, 77letrd 11312 . . . . . . . . . 10 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))
7978olcd 872 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))
8079ex 413 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
8123, 80syld 47 . . . . . . 7 (((𝜑𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
82813exp 1119 . . . . . 6 ((𝜑𝑥 ∈ ℝ+) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))))
8382com34 91 . . . . 5 ((𝜑𝑥 ∈ ℝ+) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))))
8483com23 86 . . . 4 ((𝜑𝑥 ∈ ℝ+) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))))
8584ralrimdvv 3198 . . 3 ((𝜑𝑥 ∈ ℝ+) → (∀𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
8685reximdva 3165 . 2 (𝜑 → (∃𝑥 ∈ ℝ+𝑎 ∈ ℝ ((abs‘(𝐴𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹𝑎))) ≤ (abs‘(𝐴𝑎))) → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))
876, 86mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ+𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845  w3a 1087   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073   class class class wbr 5105  wf 6492  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  0cc0 11051  1c1 11052   · cmul 11056  cle 11190  cmin 11385   / cdiv 11812  cn 12153  cz 12499  cq 12873  +crp 12915  cexp 13967  abscabs 15119  Polycply 25545  degcdgr 25548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-inf2 9577  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-iin 4957  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-of 7617  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-2o 8413  df-er 8648  df-map 8767  df-pm 8768  df-ixp 8836  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-fi 9347  df-sup 9378  df-inf 9379  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-ioo 13268  df-ico 13270  df-icc 13271  df-fz 13425  df-fzo 13568  df-fl 13697  df-seq 13907  df-exp 13968  df-hash 14231  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-clim 15370  df-rlim 15371  df-sum 15571  df-struct 17019  df-sets 17036  df-slot 17054  df-ndx 17066  df-base 17084  df-ress 17113  df-plusg 17146  df-mulr 17147  df-starv 17148  df-sca 17149  df-vsca 17150  df-ip 17151  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-hom 17157  df-cco 17158  df-rest 17304  df-topn 17305  df-0g 17323  df-gsum 17324  df-topgen 17325  df-pt 17326  df-prds 17329  df-xrs 17384  df-qtop 17389  df-imas 17390  df-xps 17392  df-mre 17466  df-mrc 17467  df-acs 17469  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-submnd 18602  df-grp 18751  df-minusg 18752  df-mulg 18873  df-subg 18925  df-cntz 19097  df-cmn 19564  df-mgp 19897  df-ur 19914  df-ring 19966  df-cring 19967  df-subrg 20220  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-fbas 20793  df-fg 20794  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cld 22370  df-ntr 22371  df-cls 22372  df-nei 22449  df-lp 22487  df-perf 22488  df-cn 22578  df-cnp 22579  df-haus 22666  df-cmp 22738  df-tx 22913  df-hmeo 23106  df-fil 23197  df-fm 23289  df-flim 23290  df-flf 23291  df-xms 23673  df-ms 23674  df-tms 23675  df-cncf 24241  df-0p 25034  df-limc 25230  df-dv 25231  df-dvn 25232  df-cpn 25233  df-ply 25549  df-coe 25551  df-dgr 25552
This theorem is referenced by:  aalioulem5  25696
  Copyright terms: Public domain W3C validator