| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | aalioulem2.a | . . 3
⊢ 𝑁 = (deg‘𝐹) | 
| 2 |  | aalioulem2.b | . . 3
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℤ)) | 
| 3 |  | aalioulem2.c | . . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) | 
| 4 |  | aalioulem2.d | . . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 5 |  | aalioulem3.e | . . 3
⊢ (𝜑 → (𝐹‘𝐴) = 0) | 
| 6 | 1, 2, 3, 4, 5 | aalioulem3 26377 | . 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎)))) | 
| 7 |  | simp2l 1199 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑝 ∈ ℤ) | 
| 8 |  | simp2r 1200 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑞 ∈ ℕ) | 
| 9 |  | znq 12995 | . . . . . . . . . . 11
⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ) | 
| 10 | 7, 8, 9 | syl2anc 584 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℚ) | 
| 11 |  | qre 12996 | . . . . . . . . . 10
⊢ ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ) | 
| 12 | 10, 11 | syl 17 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℝ) | 
| 13 |  | simp3r 1202 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) | 
| 14 |  | oveq2 7440 | . . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑝 / 𝑞) → (𝐴 − 𝑎) = (𝐴 − (𝑝 / 𝑞))) | 
| 15 | 14 | fveq2d 6909 | . . . . . . . . . . . . 13
⊢ (𝑎 = (𝑝 / 𝑞) → (abs‘(𝐴 − 𝑎)) = (abs‘(𝐴 − (𝑝 / 𝑞)))) | 
| 16 | 15 | breq1d 5152 | . . . . . . . . . . . 12
⊢ (𝑎 = (𝑝 / 𝑞) → ((abs‘(𝐴 − 𝑎)) ≤ 1 ↔ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) | 
| 17 |  | 2fveq3 6910 | . . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑝 / 𝑞) → (abs‘(𝐹‘𝑎)) = (abs‘(𝐹‘(𝑝 / 𝑞)))) | 
| 18 | 17 | oveq2d 7448 | . . . . . . . . . . . . 13
⊢ (𝑎 = (𝑝 / 𝑞) → (𝑥 · (abs‘(𝐹‘𝑎))) = (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞))))) | 
| 19 | 18, 15 | breq12d 5155 | . . . . . . . . . . . 12
⊢ (𝑎 = (𝑝 / 𝑞) → ((𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎)) ↔ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) | 
| 20 | 16, 19 | imbi12d 344 | . . . . . . . . . . 11
⊢ (𝑎 = (𝑝 / 𝑞) → (((abs‘(𝐴 − 𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) ↔ ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | 
| 21 | 20 | rspcv 3617 | . . . . . . . . . 10
⊢ ((𝑝 / 𝑞) ∈ ℝ → (∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | 
| 22 | 21 | com23 86 | . . . . . . . . 9
⊢ ((𝑝 / 𝑞) ∈ ℝ → ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (∀𝑎 ∈ ℝ ((abs‘(𝐴 − 𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | 
| 23 | 12, 13, 22 | sylc 65 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) | 
| 24 |  | simp1r 1198 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℝ+) | 
| 25 | 8 | nnrpd 13076 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑞 ∈ ℝ+) | 
| 26 |  | simp1l 1197 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝜑) | 
| 27 | 26, 3 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑁 ∈ ℕ) | 
| 28 | 27 | nnzd 12642 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑁 ∈ ℤ) | 
| 29 | 25, 28 | rpexpcld 14287 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞↑𝑁) ∈
ℝ+) | 
| 30 | 24, 29 | rpdivcld 13095 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞↑𝑁)) ∈
ℝ+) | 
| 31 | 30 | rpred 13078 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞↑𝑁)) ∈ ℝ) | 
| 32 | 31 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞↑𝑁)) ∈ ℝ) | 
| 33 | 24 | rpred 13078 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℝ) | 
| 34 | 26, 2 | syl 17 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐹 ∈
(Poly‘ℤ)) | 
| 35 |  | plyf 26238 | . . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (Poly‘ℤ)
→ 𝐹:ℂ⟶ℂ) | 
| 36 | 34, 35 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐹:ℂ⟶ℂ) | 
| 37 | 12 | recnd 11290 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℂ) | 
| 38 | 36, 37 | ffvelcdmd 7104 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐹‘(𝑝 / 𝑞)) ∈ ℂ) | 
| 39 | 38 | abscld 15476 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐹‘(𝑝 / 𝑞))) ∈ ℝ) | 
| 40 | 33, 39 | remulcld 11292 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℝ) | 
| 41 | 40 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℝ) | 
| 42 | 26, 4 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐴 ∈ ℝ) | 
| 43 | 42, 12 | resubcld 11692 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ) | 
| 44 | 43 | recnd 11290 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ) | 
| 45 | 44 | abscld 15476 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) | 
| 46 | 45 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) | 
| 47 | 24 | rpcnd 13080 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℂ) | 
| 48 | 29 | rpcnd 13080 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞↑𝑁) ∈ ℂ) | 
| 49 | 29 | rpne0d 13083 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞↑𝑁) ≠ 0) | 
| 50 | 47, 48, 49 | divrecd 12047 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞↑𝑁)) = (𝑥 · (1 / (𝑞↑𝑁)))) | 
| 51 | 48, 38 | absmuld 15494 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞)))) = ((abs‘(𝑞↑𝑁)) · (abs‘(𝐹‘(𝑝 / 𝑞))))) | 
| 52 | 29 | rpred 13078 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞↑𝑁) ∈ ℝ) | 
| 53 | 29 | rpge0d 13082 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 0 ≤ (𝑞↑𝑁)) | 
| 54 | 52, 53 | absidd 15462 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝑞↑𝑁)) = (𝑞↑𝑁)) | 
| 55 | 54 | oveq1d 7447 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((abs‘(𝑞↑𝑁)) · (abs‘(𝐹‘(𝑝 / 𝑞)))) = ((𝑞↑𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞))))) | 
| 56 | 51, 55 | eqtrd 2776 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞)))) = ((𝑞↑𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞))))) | 
| 57 | 48, 38 | mulcomd 11283 | . . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑𝑁))) | 
| 58 | 1 | oveq2i 7443 | . . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞↑𝑁) = (𝑞↑(deg‘𝐹)) | 
| 59 | 58 | oveq2i 7443 | . . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑𝑁)) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹))) | 
| 60 | 57, 59 | eqtrdi 2792 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹)))) | 
| 61 | 34, 7, 8 | aalioulem1 26375 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹))) ∈ ℤ) | 
| 62 | 60, 61 | eqeltrd 2840 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) ∈ ℤ) | 
| 63 |  | simp3l 1201 | . . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐹‘(𝑝 / 𝑞)) ≠ 0) | 
| 64 | 48, 38, 49, 63 | mulne0d 11916 | . . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) ≠ 0) | 
| 65 |  | nnabscl 15365 | . . . . . . . . . . . . . . . . . 18
⊢ ((((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) ∈ ℤ ∧ ((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) ≠ 0) → (abs‘((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞)))) ∈ ℕ) | 
| 66 | 62, 64, 65 | syl2anc 584 | . . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞)))) ∈ ℕ) | 
| 67 | 56, 66 | eqeltrrd 2841 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞↑𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℕ) | 
| 68 | 67 | nnge1d 12315 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 1 ≤ ((𝑞↑𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞))))) | 
| 69 |  | 1red 11263 | . . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 1 ∈
ℝ) | 
| 70 | 69, 39, 29 | ledivmuld 13131 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((1 / (𝑞↑𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))) ↔ 1 ≤ ((𝑞↑𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))))) | 
| 71 | 68, 70 | mpbird 257 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (1 / (𝑞↑𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞)))) | 
| 72 | 29 | rprecred 13089 | . . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (1 / (𝑞↑𝑁)) ∈ ℝ) | 
| 73 | 72, 39, 24 | lemul2d 13122 | . . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((1 / (𝑞↑𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))) ↔ (𝑥 · (1 / (𝑞↑𝑁))) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))) | 
| 74 | 71, 73 | mpbid 232 | . . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 · (1 / (𝑞↑𝑁))) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞))))) | 
| 75 | 50, 74 | eqbrtrd 5164 | . . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞↑𝑁)) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞))))) | 
| 76 | 75 | adantr 480 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞↑𝑁)) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞))))) | 
| 77 |  | simpr 484 | . . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) | 
| 78 | 32, 41, 46, 76, 77 | letrd 11419 | . . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) | 
| 79 | 78 | olcd 874 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) | 
| 80 | 79 | ex 412 | . . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | 
| 81 | 23, 80 | syld 47 | . . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) | 
| 82 | 81 | 3exp 1119 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))) | 
| 83 | 82 | com34 91 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) →
(∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))) | 
| 84 | 83 | com23 86 | . . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))) | 
| 85 | 84 | ralrimdvv 3202 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))) | 
| 86 | 85 | reximdva 3167 | . 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ+ ∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))) | 
| 87 | 6, 86 | mpd 15 | 1
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |