Step | Hyp | Ref
| Expression |
1 | | aalioulem2.a |
. . 3
⊢ 𝑁 = (deg‘𝐹) |
2 | | aalioulem2.b |
. . 3
⊢ (𝜑 → 𝐹 ∈
(Poly‘ℤ)) |
3 | | aalioulem2.c |
. . 3
⊢ (𝜑 → 𝑁 ∈ ℕ) |
4 | | aalioulem2.d |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
5 | | aalioulem3.e |
. . 3
⊢ (𝜑 → (𝐹‘𝐴) = 0) |
6 | 1, 2, 3, 4, 5 | aalioulem3 25029 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎)))) |
7 | | simp2l 1196 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑝 ∈ ℤ) |
8 | | simp2r 1197 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑞 ∈ ℕ) |
9 | | znq 12392 |
. . . . . . . . . . 11
⊢ ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (𝑝 / 𝑞) ∈ ℚ) |
10 | 7, 8, 9 | syl2anc 587 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℚ) |
11 | | qre 12393 |
. . . . . . . . . 10
⊢ ((𝑝 / 𝑞) ∈ ℚ → (𝑝 / 𝑞) ∈ ℝ) |
12 | 10, 11 | syl 17 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℝ) |
13 | | simp3r 1199 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) |
14 | | oveq2 7158 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑝 / 𝑞) → (𝐴 − 𝑎) = (𝐴 − (𝑝 / 𝑞))) |
15 | 14 | fveq2d 6662 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑝 / 𝑞) → (abs‘(𝐴 − 𝑎)) = (abs‘(𝐴 − (𝑝 / 𝑞)))) |
16 | 15 | breq1d 5042 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑝 / 𝑞) → ((abs‘(𝐴 − 𝑎)) ≤ 1 ↔ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) |
17 | | 2fveq3 6663 |
. . . . . . . . . . . . . 14
⊢ (𝑎 = (𝑝 / 𝑞) → (abs‘(𝐹‘𝑎)) = (abs‘(𝐹‘(𝑝 / 𝑞)))) |
18 | 17 | oveq2d 7166 |
. . . . . . . . . . . . 13
⊢ (𝑎 = (𝑝 / 𝑞) → (𝑥 · (abs‘(𝐹‘𝑎))) = (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞))))) |
19 | 18, 15 | breq12d 5045 |
. . . . . . . . . . . 12
⊢ (𝑎 = (𝑝 / 𝑞) → ((𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎)) ↔ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) |
20 | 16, 19 | imbi12d 348 |
. . . . . . . . . . 11
⊢ (𝑎 = (𝑝 / 𝑞) → (((abs‘(𝐴 − 𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) ↔ ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
21 | 20 | rspcv 3536 |
. . . . . . . . . 10
⊢ ((𝑝 / 𝑞) ∈ ℝ → (∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
22 | 21 | com23 86 |
. . . . . . . . 9
⊢ ((𝑝 / 𝑞) ∈ ℝ → ((abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1 → (∀𝑎 ∈ ℝ ((abs‘(𝐴 − 𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
23 | 12, 13, 22 | sylc 65 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) |
24 | | simp1r 1195 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℝ+) |
25 | 8 | nnrpd 12470 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑞 ∈ ℝ+) |
26 | | simp1l 1194 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝜑) |
27 | 26, 3 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑁 ∈ ℕ) |
28 | 27 | nnzd 12125 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑁 ∈ ℤ) |
29 | 25, 28 | rpexpcld 13658 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞↑𝑁) ∈
ℝ+) |
30 | 24, 29 | rpdivcld 12489 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞↑𝑁)) ∈
ℝ+) |
31 | 30 | rpred 12472 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞↑𝑁)) ∈ ℝ) |
32 | 31 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞↑𝑁)) ∈ ℝ) |
33 | 24 | rpred 12472 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℝ) |
34 | 26, 2 | syl 17 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐹 ∈
(Poly‘ℤ)) |
35 | | plyf 24894 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ (Poly‘ℤ)
→ 𝐹:ℂ⟶ℂ) |
36 | 34, 35 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐹:ℂ⟶ℂ) |
37 | 12 | recnd 10707 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑝 / 𝑞) ∈ ℂ) |
38 | 36, 37 | ffvelrnd 6843 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐹‘(𝑝 / 𝑞)) ∈ ℂ) |
39 | 38 | abscld 14844 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐹‘(𝑝 / 𝑞))) ∈ ℝ) |
40 | 33, 39 | remulcld 10709 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℝ) |
41 | 40 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℝ) |
42 | 26, 4 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝐴 ∈ ℝ) |
43 | 42, 12 | resubcld 11106 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℝ) |
44 | 43 | recnd 10707 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐴 − (𝑝 / 𝑞)) ∈ ℂ) |
45 | 44 | abscld 14844 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) |
46 | 45 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (abs‘(𝐴 − (𝑝 / 𝑞))) ∈ ℝ) |
47 | 24 | rpcnd 12474 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 𝑥 ∈ ℂ) |
48 | 29 | rpcnd 12474 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞↑𝑁) ∈ ℂ) |
49 | 29 | rpne0d 12477 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞↑𝑁) ≠ 0) |
50 | 47, 48, 49 | divrecd 11457 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞↑𝑁)) = (𝑥 · (1 / (𝑞↑𝑁)))) |
51 | 48, 38 | absmuld 14862 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞)))) = ((abs‘(𝑞↑𝑁)) · (abs‘(𝐹‘(𝑝 / 𝑞))))) |
52 | 29 | rpred 12472 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑞↑𝑁) ∈ ℝ) |
53 | 29 | rpge0d 12476 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 0 ≤ (𝑞↑𝑁)) |
54 | 52, 53 | absidd 14830 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘(𝑞↑𝑁)) = (𝑞↑𝑁)) |
55 | 54 | oveq1d 7165 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((abs‘(𝑞↑𝑁)) · (abs‘(𝐹‘(𝑝 / 𝑞)))) = ((𝑞↑𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞))))) |
56 | 51, 55 | eqtrd 2793 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞)))) = ((𝑞↑𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞))))) |
57 | 48, 38 | mulcomd 10700 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑𝑁))) |
58 | 1 | oveq2i 7161 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑞↑𝑁) = (𝑞↑(deg‘𝐹)) |
59 | 58 | oveq2i 7161 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑𝑁)) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹))) |
60 | 57, 59 | eqtrdi 2809 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) = ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹)))) |
61 | 34, 7, 8 | aalioulem1 25027 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝐹‘(𝑝 / 𝑞)) · (𝑞↑(deg‘𝐹))) ∈ ℤ) |
62 | 60, 61 | eqeltrd 2852 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) ∈ ℤ) |
63 | | simp3l 1198 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝐹‘(𝑝 / 𝑞)) ≠ 0) |
64 | 48, 38, 49, 63 | mulne0d 11330 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) ≠ 0) |
65 | | nnabscl 14733 |
. . . . . . . . . . . . . . . . . 18
⊢ ((((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) ∈ ℤ ∧ ((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞))) ≠ 0) → (abs‘((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞)))) ∈ ℕ) |
66 | 62, 64, 65 | syl2anc 587 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (abs‘((𝑞↑𝑁) · (𝐹‘(𝑝 / 𝑞)))) ∈ ℕ) |
67 | 56, 66 | eqeltrrd 2853 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑞↑𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))) ∈ ℕ) |
68 | 67 | nnge1d 11722 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 1 ≤ ((𝑞↑𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞))))) |
69 | | 1red 10680 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → 1 ∈
ℝ) |
70 | 69, 39, 29 | ledivmuld 12525 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((1 / (𝑞↑𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))) ↔ 1 ≤ ((𝑞↑𝑁) · (abs‘(𝐹‘(𝑝 / 𝑞)))))) |
71 | 68, 70 | mpbird 260 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (1 / (𝑞↑𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞)))) |
72 | 29 | rprecred 12483 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (1 / (𝑞↑𝑁)) ∈ ℝ) |
73 | 72, 39, 24 | lemul2d 12516 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((1 / (𝑞↑𝑁)) ≤ (abs‘(𝐹‘(𝑝 / 𝑞))) ↔ (𝑥 · (1 / (𝑞↑𝑁))) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))))) |
74 | 71, 73 | mpbid 235 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 · (1 / (𝑞↑𝑁))) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞))))) |
75 | 50, 74 | eqbrtrd 5054 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (𝑥 / (𝑞↑𝑁)) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞))))) |
76 | 75 | adantr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞↑𝑁)) ≤ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞))))) |
77 | | simpr 488 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) |
78 | 32, 41, 46, 76, 77 | letrd 10835 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) |
79 | 78 | olcd 871 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) ∧ (𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))) |
80 | 79 | ex 416 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → ((𝑥 · (abs‘(𝐹‘(𝑝 / 𝑞)))) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
81 | 23, 80 | syld 47 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ+) ∧ (𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) ∧ ((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1)) → (∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |
82 | 81 | 3exp 1116 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))) |
83 | 82 | com34 91 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) →
(∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))) |
84 | 83 | com23 86 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → ((𝑝 ∈ ℤ ∧ 𝑞 ∈ ℕ) → (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))))) |
85 | 84 | ralrimdvv 3122 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ+) →
(∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))) |
86 | 85 | reximdva 3198 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ+ ∀𝑎 ∈ ℝ
((abs‘(𝐴 −
𝑎)) ≤ 1 → (𝑥 · (abs‘(𝐹‘𝑎))) ≤ (abs‘(𝐴 − 𝑎))) → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞))))))) |
87 | 6, 86 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∀𝑝 ∈ ℤ ∀𝑞 ∈ ℕ (((𝐹‘(𝑝 / 𝑞)) ≠ 0 ∧ (abs‘(𝐴 − (𝑝 / 𝑞))) ≤ 1) → (𝐴 = (𝑝 / 𝑞) ∨ (𝑥 / (𝑞↑𝑁)) ≤ (abs‘(𝐴 − (𝑝 / 𝑞)))))) |