Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
Ref | Expression |
---|---|
ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
Ref | Expression |
---|---|
ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
2 | 1 | expd 415 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
3 | 2 | ralrimdv 3111 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
4 | 3 | ralrimiv 3106 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3063 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ral 3068 |
This theorem is referenced by: ralrimivva 3114 ralrimdvv 3116 reuind 3683 disjiund 5060 disjxiun 5067 somo 5531 ssrel2 5685 sorpsscmpl 7565 f1o2ndf1 7934 soxp 7941 smoiso 8164 smo11 8166 fiint 9021 sornom 9964 axdc4lem 10142 zorn2lem6 10188 fpwwe2lem11 10328 fpwwe2lem12 10329 nqereu 10616 genpnnp 10692 receu 11550 lbreu 11855 injresinj 13436 sqrmo 14891 iscatd 17299 isfuncd 17496 0subm 18371 insubm 18372 sursubmefmnd 18450 injsubmefmnd 18451 cycsubm 18736 symgextf1 18944 lsmsubm 19173 iscmnd 19314 qusabl 19381 cycsubmcmn 19404 dprdsubg 19542 issrngd 20036 quscrng 20424 mamudm 21447 mat1dimcrng 21534 mavmuldm 21607 fitop 21957 tgcl 22027 topbas 22030 ppttop 22065 epttop 22067 restbas 22217 isnrm2 22417 isnrm3 22418 2ndcctbss 22514 txbas 22626 txbasval 22665 txhaus 22706 xkohaus 22712 basqtop 22770 opnfbas 22901 isfild 22917 filfi 22918 neifil 22939 fbasrn 22943 filufint 22979 rnelfmlem 23011 fmfnfmlem3 23015 fmfnfm 23017 blfps 23467 blf 23468 blbas 23491 minveclem3b 24497 aalioulem2 25398 axcontlem9 27243 upgrwlkdvdelem 28005 grpodivf 28801 ipf 28976 ocsh 29546 adjadj 30199 unopadj2 30201 hmopadj 30202 hmopbdoptHIL 30251 lnopmi 30263 adjlnop 30349 xreceu 31098 esumcocn 31948 bnj1384 32912 f1resrcmplf1d 32959 mclsax 33431 dfon2 33674 nocvxmin 33900 outsideofeu 34360 hilbert1.2 34384 opnrebl2 34437 nn0prpw 34439 fness 34465 tailfb 34493 ontopbas 34544 neificl 35838 metf1o 35840 crngohomfo 36091 smprngopr 36137 ispridlc 36155 prter2 36822 snatpsubN 37691 pclclN 37832 pclfinN 37841 ltrncnv 38087 cdleme24 38293 cdleme28 38314 cdleme50ltrn 38498 cdleme 38501 ltrnco 38660 cdlemk28-3 38849 diaf11N 38990 dibf11N 39102 dihlsscpre 39175 mapdpg 39647 mapdh9a 39730 mapdh9aOLDN 39731 hdmap14lem6 39814 mzpincl 40472 mzpindd 40484 iunconnlem2 42444 islptre 43050 fcoresf1 44450 2reu8i 44492 lmod1 45721 |
Copyright terms: Public domain | W3C validator |