| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
| 2 | 1 | expd 415 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
| 3 | 2 | ralrimdv 3139 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
| 4 | 3 | ralrimiv 3132 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3053 |
| This theorem is referenced by: ralrimivva 3188 ralrimdvv 3189 reuind 3741 disjiund 5115 disjxiun 5121 somo 5605 ssrel2 5769 sorpsscmpl 7733 resf1extb 7935 f1o2ndf1 8126 soxp 8133 smoiso 8381 smo11 8383 fiint 9343 fiintOLD 9344 sornom 10296 axdc4lem 10474 zorn2lem6 10520 fpwwe2lem11 10660 fpwwe2lem12 10661 nqereu 10948 genpnnp 11024 receu 11887 lbreu 12197 injresinj 13809 sqrmo 15275 iscatd 17690 isfuncd 17883 0subm 18800 insubm 18801 sursubmefmnd 18879 injsubmefmnd 18880 cycsubm 19190 symgextf1 19407 lsmsubm 19639 iscmnd 19780 qusabl 19851 cycsubmcmn 19875 dprdsubg 20012 issrngd 20820 quscrng 21249 mamudm 22338 mat1dimcrng 22420 mavmuldm 22493 fitop 22843 tgcl 22912 topbas 22915 ppttop 22950 epttop 22952 restbas 23101 isnrm2 23301 isnrm3 23302 2ndcctbss 23398 txbas 23510 txbasval 23549 txhaus 23590 xkohaus 23596 basqtop 23654 opnfbas 23785 isfild 23801 filfi 23802 neifil 23823 fbasrn 23827 filufint 23863 rnelfmlem 23895 fmfnfmlem3 23899 fmfnfm 23901 blfps 24350 blf 24351 blbas 24374 minveclem3b 25385 aalioulem2 26298 nocvxmin 27747 negsprop 27998 axcontlem9 28956 upgrwlkdvdelem 29723 grpodivf 30524 ipf 30699 ocsh 31269 adjadj 31922 unopadj2 31924 hmopadj 31925 hmopbdoptHIL 31974 lnopmi 31986 adjlnop 32072 xreceu 32901 esumcocn 34116 bnj1384 35068 f1resrcmplf1d 35123 mclsax 35596 dfon2 35815 outsideofeu 36154 hilbert1.2 36178 opnrebl2 36344 nn0prpw 36346 fness 36372 tailfb 36400 ontopbas 36451 neificl 37782 metf1o 37784 crngohomfo 38035 smprngopr 38081 ispridlc 38099 disjdmqsss 38825 disjdmqscossss 38826 prter2 38904 snatpsubN 39774 pclclN 39915 pclfinN 39924 ltrncnv 40170 cdleme24 40376 cdleme28 40397 cdleme50ltrn 40581 cdleme 40584 ltrnco 40743 cdlemk28-3 40932 diaf11N 41073 dibf11N 41185 dihlsscpre 41258 mapdpg 41730 mapdh9a 41813 mapdh9aOLDN 41814 hdmap14lem6 41897 mzpincl 42732 mzpindd 42744 iunconnlem2 44934 islptre 45628 ormkglobd 46884 fcoresf1 47078 2reu8i 47122 lmod1 48448 |
| Copyright terms: Public domain | W3C validator |