| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
| 2 | 1 | expd 415 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
| 3 | 2 | ralrimdv 3130 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
| 4 | 3 | ralrimiv 3123 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2111 ∀wral 3047 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3048 |
| This theorem is referenced by: ralrimivva 3175 ralrimdvv 3176 reuind 3707 disjiund 5080 disjxiun 5086 somo 5561 ssrel2 5724 sorpsscmpl 7667 resf1extb 7864 f1o2ndf1 8052 soxp 8059 smoiso 8282 smo11 8284 fiint 9211 sornom 10168 axdc4lem 10346 zorn2lem6 10392 fpwwe2lem11 10532 fpwwe2lem12 10533 nqereu 10820 genpnnp 10896 receu 11762 lbreu 12072 injresinj 13691 sqrmo 15158 iscatd 17579 isfuncd 17772 0subm 18725 insubm 18726 sursubmefmnd 18804 injsubmefmnd 18805 cycsubm 19114 symgextf1 19333 lsmsubm 19565 iscmnd 19706 qusabl 19777 cycsubmcmn 19801 dprdsubg 19938 issrngd 20770 quscrng 21220 mamudm 22310 mat1dimcrng 22392 mavmuldm 22465 fitop 22815 tgcl 22884 topbas 22887 ppttop 22922 epttop 22924 restbas 23073 isnrm2 23273 isnrm3 23274 2ndcctbss 23370 txbas 23482 txbasval 23521 txhaus 23562 xkohaus 23568 basqtop 23626 opnfbas 23757 isfild 23773 filfi 23774 neifil 23795 fbasrn 23799 filufint 23835 rnelfmlem 23867 fmfnfmlem3 23871 fmfnfm 23873 blfps 24321 blf 24322 blbas 24345 minveclem3b 25355 aalioulem2 26268 nocvxmin 27718 negsprop 27977 axcontlem9 28950 upgrwlkdvdelem 29714 grpodivf 30518 ipf 30693 ocsh 31263 adjadj 31916 unopadj2 31918 hmopadj 31919 hmopbdoptHIL 31968 lnopmi 31980 adjlnop 32066 xreceu 32902 esumcocn 34093 bnj1384 35044 f1resrcmplf1d 35099 mclsax 35613 dfon2 35834 outsideofeu 36175 hilbert1.2 36199 opnrebl2 36365 nn0prpw 36367 fness 36393 tailfb 36421 ontopbas 36472 neificl 37792 metf1o 37794 crngohomfo 38045 smprngopr 38091 ispridlc 38109 disjdmqsss 38899 disjdmqscossss 38900 prter2 38979 snatpsubN 39848 pclclN 39989 pclfinN 39998 ltrncnv 40244 cdleme24 40450 cdleme28 40471 cdleme50ltrn 40655 cdleme 40658 ltrnco 40817 cdlemk28-3 41006 diaf11N 41147 dibf11N 41259 dihlsscpre 41332 mapdpg 41804 mapdh9a 41887 mapdh9aOLDN 41888 hdmap14lem6 41971 mzpincl 42826 mzpindd 42838 iunconnlem2 45026 islptre 45718 ormkglobd 46972 fcoresf1 47168 2reu8i 47212 lmod1 48592 |
| Copyright terms: Public domain | W3C validator |