![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
Ref | Expression |
---|---|
ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
Ref | Expression |
---|---|
ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
2 | 1 | expd 415 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
3 | 2 | ralrimdv 3149 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
4 | 3 | ralrimiv 3142 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 ∀wral 3058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3059 |
This theorem is referenced by: ralrimivva 3199 ralrimdvv 3200 reuind 3761 disjiund 5138 disjxiun 5144 somo 5634 ssrel2 5797 sorpsscmpl 7752 f1o2ndf1 8145 soxp 8152 smoiso 8400 smo11 8402 fiint 9363 fiintOLD 9364 sornom 10314 axdc4lem 10492 zorn2lem6 10538 fpwwe2lem11 10678 fpwwe2lem12 10679 nqereu 10966 genpnnp 11042 receu 11905 lbreu 12215 injresinj 13823 sqrmo 15286 iscatd 17717 isfuncd 17915 0subm 18842 insubm 18843 sursubmefmnd 18921 injsubmefmnd 18922 cycsubm 19232 symgextf1 19453 lsmsubm 19685 iscmnd 19826 qusabl 19897 cycsubmcmn 19921 dprdsubg 20058 issrngd 20872 quscrng 21310 mamudm 22414 mat1dimcrng 22498 mavmuldm 22571 fitop 22921 tgcl 22991 topbas 22994 ppttop 23029 epttop 23031 restbas 23181 isnrm2 23381 isnrm3 23382 2ndcctbss 23478 txbas 23590 txbasval 23629 txhaus 23670 xkohaus 23676 basqtop 23734 opnfbas 23865 isfild 23881 filfi 23882 neifil 23903 fbasrn 23907 filufint 23943 rnelfmlem 23975 fmfnfmlem3 23979 fmfnfm 23981 blfps 24431 blf 24432 blbas 24455 minveclem3b 25475 aalioulem2 26389 nocvxmin 27837 negsprop 28081 axcontlem9 29001 upgrwlkdvdelem 29768 grpodivf 30566 ipf 30741 ocsh 31311 adjadj 31964 unopadj2 31966 hmopadj 31967 hmopbdoptHIL 32016 lnopmi 32028 adjlnop 32114 xreceu 32888 esumcocn 34060 bnj1384 35024 f1resrcmplf1d 35079 mclsax 35553 dfon2 35773 outsideofeu 36112 hilbert1.2 36136 opnrebl2 36303 nn0prpw 36305 fness 36331 tailfb 36359 ontopbas 36410 neificl 37739 metf1o 37741 crngohomfo 37992 smprngopr 38038 ispridlc 38056 disjdmqsss 38783 disjdmqscossss 38784 prter2 38862 snatpsubN 39732 pclclN 39873 pclfinN 39882 ltrncnv 40128 cdleme24 40334 cdleme28 40355 cdleme50ltrn 40539 cdleme 40542 ltrnco 40701 cdlemk28-3 40890 diaf11N 41031 dibf11N 41143 dihlsscpre 41216 mapdpg 41688 mapdh9a 41771 mapdh9aOLDN 41772 hdmap14lem6 41855 mzpincl 42721 mzpindd 42733 iunconnlem2 44932 islptre 45574 fcoresf1 47018 2reu8i 47062 lmod1 48337 |
Copyright terms: Public domain | W3C validator |