![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
Ref | Expression |
---|---|
ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
Ref | Expression |
---|---|
ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
2 | 1 | expd 415 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
3 | 2 | ralrimdv 3158 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
4 | 3 | ralrimiv 3151 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2108 ∀wral 3067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3068 |
This theorem is referenced by: ralrimivva 3208 ralrimdvv 3209 reuind 3775 disjiund 5157 disjxiun 5163 somo 5646 ssrel2 5809 sorpsscmpl 7769 f1o2ndf1 8163 soxp 8170 smoiso 8418 smo11 8420 fiint 9394 fiintOLD 9395 sornom 10346 axdc4lem 10524 zorn2lem6 10570 fpwwe2lem11 10710 fpwwe2lem12 10711 nqereu 10998 genpnnp 11074 receu 11935 lbreu 12245 injresinj 13838 sqrmo 15300 iscatd 17731 isfuncd 17929 0subm 18852 insubm 18853 sursubmefmnd 18931 injsubmefmnd 18932 cycsubm 19242 symgextf1 19463 lsmsubm 19695 iscmnd 19836 qusabl 19907 cycsubmcmn 19931 dprdsubg 20068 issrngd 20878 quscrng 21316 mamudm 22420 mat1dimcrng 22504 mavmuldm 22577 fitop 22927 tgcl 22997 topbas 23000 ppttop 23035 epttop 23037 restbas 23187 isnrm2 23387 isnrm3 23388 2ndcctbss 23484 txbas 23596 txbasval 23635 txhaus 23676 xkohaus 23682 basqtop 23740 opnfbas 23871 isfild 23887 filfi 23888 neifil 23909 fbasrn 23913 filufint 23949 rnelfmlem 23981 fmfnfmlem3 23985 fmfnfm 23987 blfps 24437 blf 24438 blbas 24461 minveclem3b 25481 aalioulem2 26393 nocvxmin 27841 negsprop 28085 axcontlem9 29005 upgrwlkdvdelem 29772 grpodivf 30570 ipf 30745 ocsh 31315 adjadj 31968 unopadj2 31970 hmopadj 31971 hmopbdoptHIL 32020 lnopmi 32032 adjlnop 32118 xreceu 32886 esumcocn 34044 bnj1384 35008 f1resrcmplf1d 35063 mclsax 35537 dfon2 35756 outsideofeu 36095 hilbert1.2 36119 opnrebl2 36287 nn0prpw 36289 fness 36315 tailfb 36343 ontopbas 36394 neificl 37713 metf1o 37715 crngohomfo 37966 smprngopr 38012 ispridlc 38030 disjdmqsss 38758 disjdmqscossss 38759 prter2 38837 snatpsubN 39707 pclclN 39848 pclfinN 39857 ltrncnv 40103 cdleme24 40309 cdleme28 40330 cdleme50ltrn 40514 cdleme 40517 ltrnco 40676 cdlemk28-3 40865 diaf11N 41006 dibf11N 41118 dihlsscpre 41191 mapdpg 41663 mapdh9a 41746 mapdh9aOLDN 41747 hdmap14lem6 41830 mzpincl 42690 mzpindd 42702 iunconnlem2 44906 islptre 45540 fcoresf1 46984 2reu8i 47028 lmod1 48221 |
Copyright terms: Public domain | W3C validator |