| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
| 2 | 1 | expd 415 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
| 3 | 2 | ralrimdv 3131 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
| 4 | 3 | ralrimiv 3124 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: ralrimivva 3178 ralrimdvv 3179 reuind 3721 disjiund 5093 disjxiun 5099 somo 5578 ssrel2 5739 sorpsscmpl 7690 resf1extb 7890 f1o2ndf1 8078 soxp 8085 smoiso 8308 smo11 8310 fiint 9253 fiintOLD 9254 sornom 10208 axdc4lem 10386 zorn2lem6 10432 fpwwe2lem11 10572 fpwwe2lem12 10573 nqereu 10860 genpnnp 10936 receu 11801 lbreu 12111 injresinj 13727 sqrmo 15194 iscatd 17615 isfuncd 17808 0subm 18727 insubm 18728 sursubmefmnd 18806 injsubmefmnd 18807 cycsubm 19117 symgextf1 19336 lsmsubm 19568 iscmnd 19709 qusabl 19780 cycsubmcmn 19804 dprdsubg 19941 issrngd 20776 quscrng 21226 mamudm 22316 mat1dimcrng 22398 mavmuldm 22471 fitop 22821 tgcl 22890 topbas 22893 ppttop 22928 epttop 22930 restbas 23079 isnrm2 23279 isnrm3 23280 2ndcctbss 23376 txbas 23488 txbasval 23527 txhaus 23568 xkohaus 23574 basqtop 23632 opnfbas 23763 isfild 23779 filfi 23780 neifil 23801 fbasrn 23805 filufint 23841 rnelfmlem 23873 fmfnfmlem3 23877 fmfnfm 23879 blfps 24328 blf 24329 blbas 24352 minveclem3b 25362 aalioulem2 26275 nocvxmin 27725 negsprop 27982 axcontlem9 28953 upgrwlkdvdelem 29717 grpodivf 30518 ipf 30693 ocsh 31263 adjadj 31916 unopadj2 31918 hmopadj 31919 hmopbdoptHIL 31968 lnopmi 31980 adjlnop 32066 xreceu 32893 esumcocn 34064 bnj1384 35016 f1resrcmplf1d 35071 mclsax 35550 dfon2 35774 outsideofeu 36113 hilbert1.2 36137 opnrebl2 36303 nn0prpw 36305 fness 36331 tailfb 36359 ontopbas 36410 neificl 37741 metf1o 37743 crngohomfo 37994 smprngopr 38040 ispridlc 38058 disjdmqsss 38788 disjdmqscossss 38789 prter2 38868 snatpsubN 39738 pclclN 39879 pclfinN 39888 ltrncnv 40134 cdleme24 40340 cdleme28 40361 cdleme50ltrn 40545 cdleme 40548 ltrnco 40707 cdlemk28-3 40896 diaf11N 41037 dibf11N 41149 dihlsscpre 41222 mapdpg 41694 mapdh9a 41777 mapdh9aOLDN 41778 hdmap14lem6 41861 mzpincl 42716 mzpindd 42728 iunconnlem2 44918 islptre 45611 ormkglobd 46867 fcoresf1 47064 2reu8i 47108 lmod1 48475 |
| Copyright terms: Public domain | W3C validator |