Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
Ref | Expression |
---|---|
ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
Ref | Expression |
---|---|
ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
2 | 1 | expd 416 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
3 | 2 | ralrimdv 3114 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
4 | 3 | ralrimiv 3109 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2110 ∀wral 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3071 |
This theorem is referenced by: ralrimivva 3117 ralrimdvv 3119 reuind 3692 disjiund 5069 disjxiun 5076 somo 5541 ssrel2 5695 sorpsscmpl 7581 f1o2ndf1 7954 soxp 7961 smoiso 8184 smo11 8186 fiint 9069 sornom 10034 axdc4lem 10212 zorn2lem6 10258 fpwwe2lem11 10398 fpwwe2lem12 10399 nqereu 10686 genpnnp 10762 receu 11620 lbreu 11925 injresinj 13506 sqrmo 14961 iscatd 17380 isfuncd 17578 0subm 18454 insubm 18455 sursubmefmnd 18533 injsubmefmnd 18534 cycsubm 18819 symgextf1 19027 lsmsubm 19256 iscmnd 19397 qusabl 19464 cycsubmcmn 19487 dprdsubg 19625 issrngd 20119 quscrng 20509 mamudm 21535 mat1dimcrng 21624 mavmuldm 21697 fitop 22047 tgcl 22117 topbas 22120 ppttop 22155 epttop 22157 restbas 22307 isnrm2 22507 isnrm3 22508 2ndcctbss 22604 txbas 22716 txbasval 22755 txhaus 22796 xkohaus 22802 basqtop 22860 opnfbas 22991 isfild 23007 filfi 23008 neifil 23029 fbasrn 23033 filufint 23069 rnelfmlem 23101 fmfnfmlem3 23105 fmfnfm 23107 blfps 23557 blf 23558 blbas 23581 minveclem3b 24590 aalioulem2 25491 axcontlem9 27338 upgrwlkdvdelem 28100 grpodivf 28896 ipf 29071 ocsh 29641 adjadj 30294 unopadj2 30296 hmopadj 30297 hmopbdoptHIL 30346 lnopmi 30358 adjlnop 30444 xreceu 31192 esumcocn 32044 bnj1384 33008 f1resrcmplf1d 33055 mclsax 33527 dfon2 33764 nocvxmin 33969 outsideofeu 34429 hilbert1.2 34453 opnrebl2 34506 nn0prpw 34508 fness 34534 tailfb 34562 ontopbas 34613 neificl 35907 metf1o 35909 crngohomfo 36160 smprngopr 36206 ispridlc 36224 prter2 36891 snatpsubN 37760 pclclN 37901 pclfinN 37910 ltrncnv 38156 cdleme24 38362 cdleme28 38383 cdleme50ltrn 38567 cdleme 38570 ltrnco 38729 cdlemk28-3 38918 diaf11N 39059 dibf11N 39171 dihlsscpre 39244 mapdpg 39716 mapdh9a 39799 mapdh9aOLDN 39800 hdmap14lem6 39883 mzpincl 40553 mzpindd 40565 iunconnlem2 42525 islptre 43131 fcoresf1 44531 2reu8i 44573 lmod1 45802 |
Copyright terms: Public domain | W3C validator |