| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
| 2 | 1 | expd 415 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
| 3 | 2 | ralrimdv 3131 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
| 4 | 3 | ralrimiv 3124 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: ralrimivva 3180 ralrimdvv 3181 reuind 3724 disjiund 5098 disjxiun 5104 somo 5585 ssrel2 5748 sorpsscmpl 7710 resf1extb 7910 f1o2ndf1 8101 soxp 8108 smoiso 8331 smo11 8333 fiint 9277 fiintOLD 9278 sornom 10230 axdc4lem 10408 zorn2lem6 10454 fpwwe2lem11 10594 fpwwe2lem12 10595 nqereu 10882 genpnnp 10958 receu 11823 lbreu 12133 injresinj 13749 sqrmo 15217 iscatd 17634 isfuncd 17827 0subm 18744 insubm 18745 sursubmefmnd 18823 injsubmefmnd 18824 cycsubm 19134 symgextf1 19351 lsmsubm 19583 iscmnd 19724 qusabl 19795 cycsubmcmn 19819 dprdsubg 19956 issrngd 20764 quscrng 21193 mamudm 22282 mat1dimcrng 22364 mavmuldm 22437 fitop 22787 tgcl 22856 topbas 22859 ppttop 22894 epttop 22896 restbas 23045 isnrm2 23245 isnrm3 23246 2ndcctbss 23342 txbas 23454 txbasval 23493 txhaus 23534 xkohaus 23540 basqtop 23598 opnfbas 23729 isfild 23745 filfi 23746 neifil 23767 fbasrn 23771 filufint 23807 rnelfmlem 23839 fmfnfmlem3 23843 fmfnfm 23845 blfps 24294 blf 24295 blbas 24318 minveclem3b 25328 aalioulem2 26241 nocvxmin 27690 negsprop 27941 axcontlem9 28899 upgrwlkdvdelem 29666 grpodivf 30467 ipf 30642 ocsh 31212 adjadj 31865 unopadj2 31867 hmopadj 31868 hmopbdoptHIL 31917 lnopmi 31929 adjlnop 32015 xreceu 32842 esumcocn 34070 bnj1384 35022 f1resrcmplf1d 35077 mclsax 35556 dfon2 35780 outsideofeu 36119 hilbert1.2 36143 opnrebl2 36309 nn0prpw 36311 fness 36337 tailfb 36365 ontopbas 36416 neificl 37747 metf1o 37749 crngohomfo 38000 smprngopr 38046 ispridlc 38064 disjdmqsss 38794 disjdmqscossss 38795 prter2 38874 snatpsubN 39744 pclclN 39885 pclfinN 39894 ltrncnv 40140 cdleme24 40346 cdleme28 40367 cdleme50ltrn 40551 cdleme 40554 ltrnco 40713 cdlemk28-3 40902 diaf11N 41043 dibf11N 41155 dihlsscpre 41228 mapdpg 41700 mapdh9a 41783 mapdh9aOLDN 41784 hdmap14lem6 41867 mzpincl 42722 mzpindd 42734 iunconnlem2 44924 islptre 45617 ormkglobd 46873 fcoresf1 47070 2reu8i 47114 lmod1 48481 |
| Copyright terms: Public domain | W3C validator |