![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ralrimivv | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
Ref | Expression |
---|---|
ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
Ref | Expression |
---|---|
ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
2 | 1 | expd 416 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
3 | 2 | ralrimdv 3152 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
4 | 3 | ralrimiv 3145 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 ∀wral 3061 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ral 3062 |
This theorem is referenced by: ralrimivva 3200 ralrimdvv 3201 reuind 3749 disjiund 5138 disjxiun 5145 somo 5625 ssrel2 5785 sorpsscmpl 7726 f1o2ndf1 8110 soxp 8117 smoiso 8364 smo11 8366 fiint 9326 sornom 10274 axdc4lem 10452 zorn2lem6 10498 fpwwe2lem11 10638 fpwwe2lem12 10639 nqereu 10926 genpnnp 11002 receu 11861 lbreu 12166 injresinj 13755 sqrmo 15200 iscatd 17619 isfuncd 17817 0subm 18700 insubm 18701 sursubmefmnd 18779 injsubmefmnd 18780 cycsubm 19081 symgextf1 19291 lsmsubm 19523 iscmnd 19664 qusabl 19735 cycsubmcmn 19759 dprdsubg 19896 issrngd 20473 quscrng 20884 mamudm 21897 mat1dimcrng 21986 mavmuldm 22059 fitop 22409 tgcl 22479 topbas 22482 ppttop 22517 epttop 22519 restbas 22669 isnrm2 22869 isnrm3 22870 2ndcctbss 22966 txbas 23078 txbasval 23117 txhaus 23158 xkohaus 23164 basqtop 23222 opnfbas 23353 isfild 23369 filfi 23370 neifil 23391 fbasrn 23395 filufint 23431 rnelfmlem 23463 fmfnfmlem3 23467 fmfnfm 23469 blfps 23919 blf 23920 blbas 23943 minveclem3b 24952 aalioulem2 25853 nocvxmin 27287 negsprop 27519 axcontlem9 28268 upgrwlkdvdelem 29031 grpodivf 29829 ipf 30004 ocsh 30574 adjadj 31227 unopadj2 31229 hmopadj 31230 hmopbdoptHIL 31279 lnopmi 31291 adjlnop 31377 xreceu 32126 esumcocn 33147 bnj1384 34112 f1resrcmplf1d 34159 mclsax 34629 dfon2 34833 outsideofeu 35172 hilbert1.2 35196 opnrebl2 35292 nn0prpw 35294 fness 35320 tailfb 35348 ontopbas 35399 neificl 36707 metf1o 36709 crngohomfo 36960 smprngopr 37006 ispridlc 37024 disjdmqsss 37758 disjdmqscossss 37759 prter2 37837 snatpsubN 38707 pclclN 38848 pclfinN 38857 ltrncnv 39103 cdleme24 39309 cdleme28 39330 cdleme50ltrn 39514 cdleme 39517 ltrnco 39676 cdlemk28-3 39865 diaf11N 40006 dibf11N 40118 dihlsscpre 40191 mapdpg 40663 mapdh9a 40746 mapdh9aOLDN 40747 hdmap14lem6 40830 mzpincl 41554 mzpindd 41566 iunconnlem2 43778 islptre 44414 fcoresf1 45858 2reu8i 45900 lmod1 47251 |
Copyright terms: Public domain | W3C validator |