| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
| 2 | 1 | expd 415 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
| 3 | 2 | ralrimdv 3127 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
| 4 | 3 | ralrimiv 3120 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: ralrimivva 3172 ralrimdvv 3173 reuind 3713 disjiund 5083 disjxiun 5089 somo 5566 ssrel2 5728 sorpsscmpl 7670 resf1extb 7867 f1o2ndf1 8055 soxp 8062 smoiso 8285 smo11 8287 fiint 9216 fiintOLD 9217 sornom 10171 axdc4lem 10349 zorn2lem6 10395 fpwwe2lem11 10535 fpwwe2lem12 10536 nqereu 10823 genpnnp 10899 receu 11765 lbreu 12075 injresinj 13691 sqrmo 15158 iscatd 17579 isfuncd 17772 0subm 18691 insubm 18692 sursubmefmnd 18770 injsubmefmnd 18771 cycsubm 19081 symgextf1 19300 lsmsubm 19532 iscmnd 19673 qusabl 19744 cycsubmcmn 19768 dprdsubg 19905 issrngd 20740 quscrng 21190 mamudm 22280 mat1dimcrng 22362 mavmuldm 22435 fitop 22785 tgcl 22854 topbas 22857 ppttop 22892 epttop 22894 restbas 23043 isnrm2 23243 isnrm3 23244 2ndcctbss 23340 txbas 23452 txbasval 23491 txhaus 23532 xkohaus 23538 basqtop 23596 opnfbas 23727 isfild 23743 filfi 23744 neifil 23765 fbasrn 23769 filufint 23805 rnelfmlem 23837 fmfnfmlem3 23841 fmfnfm 23843 blfps 24292 blf 24293 blbas 24316 minveclem3b 25326 aalioulem2 26239 nocvxmin 27689 negsprop 27948 axcontlem9 28921 upgrwlkdvdelem 29685 grpodivf 30486 ipf 30661 ocsh 31231 adjadj 31884 unopadj2 31886 hmopadj 31887 hmopbdoptHIL 31936 lnopmi 31948 adjlnop 32034 xreceu 32871 esumcocn 34063 bnj1384 35015 f1resrcmplf1d 35070 mclsax 35562 dfon2 35786 outsideofeu 36125 hilbert1.2 36149 opnrebl2 36315 nn0prpw 36317 fness 36343 tailfb 36371 ontopbas 36422 neificl 37753 metf1o 37755 crngohomfo 38006 smprngopr 38052 ispridlc 38070 disjdmqsss 38800 disjdmqscossss 38801 prter2 38880 snatpsubN 39749 pclclN 39890 pclfinN 39899 ltrncnv 40145 cdleme24 40351 cdleme28 40372 cdleme50ltrn 40556 cdleme 40559 ltrnco 40718 cdlemk28-3 40907 diaf11N 41048 dibf11N 41160 dihlsscpre 41233 mapdpg 41705 mapdh9a 41788 mapdh9aOLDN 41789 hdmap14lem6 41872 mzpincl 42727 mzpindd 42739 iunconnlem2 44928 islptre 45620 ormkglobd 46876 fcoresf1 47073 2reu8i 47117 lmod1 48497 |
| Copyright terms: Public domain | W3C validator |