| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimivv | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version with double quantification.) (Contributed by NM, 24-Jul-2004.) |
| Ref | Expression |
|---|---|
| ralrimivv.1 | ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) |
| Ref | Expression |
|---|---|
| ralrimivv | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimivv.1 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐵) → 𝜓)) | |
| 2 | 1 | expd 415 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐵 → 𝜓))) |
| 3 | 2 | ralrimdv 3131 | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → ∀𝑦 ∈ 𝐵 𝜓)) |
| 4 | 3 | ralrimiv 3124 | 1 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 ∀wral 3044 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ral 3045 |
| This theorem is referenced by: ralrimivva 3178 ralrimdvv 3179 reuind 3721 disjiund 5093 disjxiun 5099 somo 5578 ssrel2 5739 sorpsscmpl 7690 resf1extb 7890 f1o2ndf1 8078 soxp 8085 smoiso 8308 smo11 8310 fiint 9253 fiintOLD 9254 sornom 10206 axdc4lem 10384 zorn2lem6 10430 fpwwe2lem11 10570 fpwwe2lem12 10571 nqereu 10858 genpnnp 10934 receu 11799 lbreu 12109 injresinj 13725 sqrmo 15193 iscatd 17614 isfuncd 17807 0subm 18726 insubm 18727 sursubmefmnd 18805 injsubmefmnd 18806 cycsubm 19116 symgextf1 19335 lsmsubm 19567 iscmnd 19708 qusabl 19779 cycsubmcmn 19803 dprdsubg 19940 issrngd 20775 quscrng 21225 mamudm 22315 mat1dimcrng 22397 mavmuldm 22470 fitop 22820 tgcl 22889 topbas 22892 ppttop 22927 epttop 22929 restbas 23078 isnrm2 23278 isnrm3 23279 2ndcctbss 23375 txbas 23487 txbasval 23526 txhaus 23567 xkohaus 23573 basqtop 23631 opnfbas 23762 isfild 23778 filfi 23779 neifil 23800 fbasrn 23804 filufint 23840 rnelfmlem 23872 fmfnfmlem3 23876 fmfnfm 23878 blfps 24327 blf 24328 blbas 24351 minveclem3b 25361 aalioulem2 26274 nocvxmin 27724 negsprop 27981 axcontlem9 28952 upgrwlkdvdelem 29716 grpodivf 30517 ipf 30692 ocsh 31262 adjadj 31915 unopadj2 31917 hmopadj 31918 hmopbdoptHIL 31967 lnopmi 31979 adjlnop 32065 xreceu 32892 esumcocn 34063 bnj1384 35015 f1resrcmplf1d 35070 mclsax 35549 dfon2 35773 outsideofeu 36112 hilbert1.2 36136 opnrebl2 36302 nn0prpw 36304 fness 36330 tailfb 36358 ontopbas 36409 neificl 37740 metf1o 37742 crngohomfo 37993 smprngopr 38039 ispridlc 38057 disjdmqsss 38787 disjdmqscossss 38788 prter2 38867 snatpsubN 39737 pclclN 39878 pclfinN 39887 ltrncnv 40133 cdleme24 40339 cdleme28 40360 cdleme50ltrn 40544 cdleme 40547 ltrnco 40706 cdlemk28-3 40895 diaf11N 41036 dibf11N 41148 dihlsscpre 41221 mapdpg 41693 mapdh9a 41776 mapdh9aOLDN 41777 hdmap14lem6 41860 mzpincl 42715 mzpindd 42727 iunconnlem2 44917 islptre 45610 ormkglobd 46866 fcoresf1 47063 2reu8i 47107 lmod1 48474 |
| Copyright terms: Public domain | W3C validator |