| Step | Hyp | Ref
| Expression |
| 1 | | ssrab2 4080 |
. . . . . 6
⊢ {𝑣 ∈ ((Base‘𝑅) ↑m
ℕ0) ∣ 𝑣 finSupp 0 } ⊆
((Base‘𝑅)
↑m ℕ0) |
| 2 | 1 | a1i 11 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 } ⊆
((Base‘𝑅)
↑m ℕ0)) |
| 3 | 2 | olcd 875 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ⊆ ((Base‘𝑅) ↑m ℕ0)
∨ {𝑣 ∈
((Base‘𝑅)
↑m ℕ0) ∣ 𝑣 finSupp 0 } ⊆
((Base‘𝑅)
↑m ℕ0))) |
| 4 | | inss 4248 |
. . . 4
⊢
((∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ⊆ ((Base‘𝑅) ↑m ℕ0)
∨ {𝑣 ∈
((Base‘𝑅)
↑m ℕ0) ∣ 𝑣 finSupp 0 } ⊆
((Base‘𝑅)
↑m ℕ0)) → (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 }) ⊆
((Base‘𝑅)
↑m ℕ0)) |
| 5 | 3, 4 | syl 17 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 }) ⊆
((Base‘𝑅)
↑m ℕ0)) |
| 6 | | xpfi 9358 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin) |
| 7 | 6 | anidms 566 |
. . . . . 6
⊢ (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin) |
| 8 | | snfi 9083 |
. . . . . . . 8
⊢
{(coe1‘(𝑀‘𝑢))} ∈ Fin |
| 9 | 8 | a1i 11 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑢 ∈ (𝑁 × 𝑁)) → {(coe1‘(𝑀‘𝑢))} ∈ Fin) |
| 10 | 9 | ralrimiva 3146 |
. . . . . 6
⊢ (𝑁 ∈ Fin → ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∈ Fin) |
| 11 | 7, 10 | jca 511 |
. . . . 5
⊢ (𝑁 ∈ Fin → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∈ Fin)) |
| 12 | 11 | 3ad2ant1 1134 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∈ Fin)) |
| 13 | | iunfi 9383 |
. . . 4
⊢ (((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∈ Fin) → ∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∈ Fin) |
| 14 | | infi 9302 |
. . . 4
⊢ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∈ Fin → (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 }) ∈
Fin) |
| 15 | 12, 13, 14 | 3syl 18 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 }) ∈
Fin) |
| 16 | | pmatcoe1fsupp.0 |
. . . . 5
⊢ 0 =
(0g‘𝑅) |
| 17 | | fvex 6919 |
. . . . 5
⊢
(0g‘𝑅) ∈ V |
| 18 | 16, 17 | eqeltri 2837 |
. . . 4
⊢ 0 ∈
V |
| 19 | 18 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 ∈ V) |
| 20 | | elin 3967 |
. . . . . 6
⊢ (𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 }) ↔
(𝑤 ∈ ∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∧ 𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})) |
| 21 | | breq1 5146 |
. . . . . . . 8
⊢ (𝑣 = 𝑤 → (𝑣 finSupp 0 ↔ 𝑤 finSupp 0 )) |
| 22 | 21 | elrab 3692 |
. . . . . . 7
⊢ (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 } ↔
(𝑤 ∈
((Base‘𝑅)
↑m ℕ0) ∧ 𝑤 finSupp 0 )) |
| 23 | 22 | simprbi 496 |
. . . . . 6
⊢ (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 } →
𝑤 finSupp 0
) |
| 24 | 20, 23 | simplbiim 504 |
. . . . 5
⊢ (𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 }) →
𝑤 finSupp 0
) |
| 25 | 24 | rgen 3063 |
. . . 4
⊢
∀𝑤 ∈
(∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 })𝑤 finSupp 0 |
| 26 | 25 | a1i 11 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∀𝑤 ∈ (∪
𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 })𝑤 finSupp 0 ) |
| 27 | | fsuppmapnn0fiub0 14034 |
. . . 4
⊢
(((∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 }) ⊆
((Base‘𝑅)
↑m ℕ0) ∧ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 }) ∈ Fin
∧ 0
∈ V) → (∀𝑤
∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 })𝑤 finSupp 0 → ∃𝑠 ∈ ℕ0
∀𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 ))) |
| 28 | 27 | imp 406 |
. . 3
⊢
((((∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 }) ⊆
((Base‘𝑅)
↑m ℕ0) ∧ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 }) ∈ Fin
∧ 0
∈ V) ∧ ∀𝑤
∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 })𝑤 finSupp 0 ) → ∃𝑠 ∈ ℕ0
∀𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 )) |
| 29 | 5, 15, 19, 26, 28 | syl31anc 1375 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 )) |
| 30 | | opelxpi 5722 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 〈𝑖, 𝑗〉 ∈ (𝑁 × 𝑁)) |
| 31 | | df-ov 7434 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖𝑀𝑗) = (𝑀‘〈𝑖, 𝑗〉) |
| 32 | 31 | fveq2i 6909 |
. . . . . . . . . . . . . . . . 17
⊢
(coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑀‘〈𝑖, 𝑗〉)) |
| 33 | | fvex 6919 |
. . . . . . . . . . . . . . . . . 18
⊢
(coe1‘(𝑀‘〈𝑖, 𝑗〉)) ∈ V |
| 34 | 33 | snid 4662 |
. . . . . . . . . . . . . . . . 17
⊢
(coe1‘(𝑀‘〈𝑖, 𝑗〉)) ∈
{(coe1‘(𝑀‘〈𝑖, 𝑗〉))} |
| 35 | 32, 34 | eqeltri 2837 |
. . . . . . . . . . . . . . . 16
⊢
(coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘〈𝑖, 𝑗〉))} |
| 36 | 35 | a1i 11 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘〈𝑖, 𝑗〉))}) |
| 37 | | 2fveq3 6911 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = 〈𝑖, 𝑗〉 → (coe1‘(𝑀‘𝑢)) = (coe1‘(𝑀‘〈𝑖, 𝑗〉))) |
| 38 | 37 | sneqd 4638 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = 〈𝑖, 𝑗〉 → {(coe1‘(𝑀‘𝑢))} = {(coe1‘(𝑀‘〈𝑖, 𝑗〉))}) |
| 39 | 38 | eliuni 4997 |
. . . . . . . . . . . . . . 15
⊢
((〈𝑖, 𝑗〉 ∈ (𝑁 × 𝑁) ∧ (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘〈𝑖, 𝑗〉))}) →
(coe1‘(𝑖𝑀𝑗)) ∈ ∪
𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))}) |
| 40 | 30, 36, 39 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ ∪
𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))}) |
| 41 | 40 | adantl 481 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ ∪
𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))}) |
| 42 | | pmatcoe1fsupp.c |
. . . . . . . . . . . . . . . 16
⊢ 𝐶 = (𝑁 Mat 𝑃) |
| 43 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 44 | | pmatcoe1fsupp.b |
. . . . . . . . . . . . . . . 16
⊢ 𝐵 = (Base‘𝐶) |
| 45 | | simprl 771 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
| 46 | | simprr 773 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
| 47 | 44 | eleq2i 2833 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐶)) |
| 48 | 47 | biimpi 216 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐶)) |
| 49 | 48 | 3ad2ant3 1136 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ (Base‘𝐶)) |
| 50 | 49 | ad3antrrr 730 |
. . . . . . . . . . . . . . . . 17
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑀 ∈ (Base‘𝐶)) |
| 51 | 50, 44 | eleqtrrdi 2852 |
. . . . . . . . . . . . . . . 16
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑀 ∈ 𝐵) |
| 52 | 42, 43, 44, 45, 46, 51 | matecld 22432 |
. . . . . . . . . . . . . . 15
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑀𝑗) ∈ (Base‘𝑃)) |
| 53 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗)) |
| 54 | | pmatcoe1fsupp.p |
. . . . . . . . . . . . . . . 16
⊢ 𝑃 = (Poly1‘𝑅) |
| 55 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 56 | | eqid 2737 |
. . . . . . . . . . . . . . . 16
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 57 | 53, 43, 54, 55, 56 | coe1fsupp 22216 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖𝑀𝑗) ∈ (Base‘𝑃) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp
(0g‘𝑅)}) |
| 58 | 52, 57 | syl 17 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp
(0g‘𝑅)}) |
| 59 | 16 | a1i 11 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → 0 =
(0g‘𝑅)) |
| 60 | 59 | breq2d 5155 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑣 finSupp 0 ↔ 𝑣 finSupp (0g‘𝑅))) |
| 61 | 60 | rabbidv 3444 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 } = {𝑣 ∈ ((Base‘𝑅) ↑m
ℕ0) ∣ 𝑣 finSupp (0g‘𝑅)}) |
| 62 | 61 | eleq2d 2827 |
. . . . . . . . . . . . . . 15
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 } ↔
(coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp
(0g‘𝑅)})) |
| 63 | 62 | ad3antrrr 730 |
. . . . . . . . . . . . . 14
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 } ↔
(coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp
(0g‘𝑅)})) |
| 64 | 58, 63 | mpbird 257 |
. . . . . . . . . . . . 13
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
}) |
| 65 | 41, 64 | elind 4200 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})) |
| 66 | | simplr 769 |
. . . . . . . . . . . 12
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑥 ∈ ℕ0) |
| 67 | | fveq1 6905 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 = (coe1‘(𝑖𝑀𝑗)) → (𝑤‘𝑧) = ((coe1‘(𝑖𝑀𝑗))‘𝑧)) |
| 68 | 67 | eqeq1d 2739 |
. . . . . . . . . . . . . 14
⊢ (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑤‘𝑧) = 0 ↔
((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 )) |
| 69 | 68 | imbi2d 340 |
. . . . . . . . . . . . 13
⊢ (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑠 < 𝑧 → (𝑤‘𝑧) = 0 ) ↔ (𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ))) |
| 70 | | breq2 5147 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (𝑠 < 𝑧 ↔ 𝑠 < 𝑥)) |
| 71 | | fveqeq2 6915 |
. . . . . . . . . . . . . 14
⊢ (𝑧 = 𝑥 → (((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ↔
((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )) |
| 72 | 70, 71 | imbi12d 344 |
. . . . . . . . . . . . 13
⊢ (𝑧 = 𝑥 → ((𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ) ↔ (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))) |
| 73 | 69, 72 | rspc2v 3633 |
. . . . . . . . . . . 12
⊢
(((coe1‘(𝑖𝑀𝑗)) ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0 }) ∧
𝑥 ∈
ℕ0) → (∀𝑤 ∈ (∪
𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))) |
| 74 | 65, 66, 73 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (∀𝑤 ∈ (∪
𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))) |
| 75 | 74 | ex 412 |
. . . . . . . . . 10
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (∀𝑤 ∈ (∪
𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))) |
| 76 | 75 | com23 86 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0)
→ (∀𝑤 ∈
(∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 ) → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))) |
| 77 | 76 | impancom 451 |
. . . . . . . 8
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧
∀𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 )) → (𝑥 ∈ ℕ0
→ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))) |
| 78 | 77 | imp 406 |
. . . . . . 7
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧
∀𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0)
→ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))) |
| 79 | 78 | com23 86 |
. . . . . 6
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧
∀𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0)
→ (𝑠 < 𝑥 → ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))) |
| 80 | 79 | ralrimdvv 3203 |
. . . . 5
⊢
(((((𝑁 ∈ Fin
∧ 𝑅 ∈ Ring ∧
𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧
∀𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0)
→ (𝑠 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )) |
| 81 | 80 | ralrimiva 3146 |
. . . 4
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) ∧
∀𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 )) → ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )) |
| 82 | 81 | ex 412 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) ∧ 𝑠 ∈ ℕ0) →
(∀𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 ) → ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))) |
| 83 | 82 | reximdva 3168 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (∃𝑠 ∈ ℕ0 ∀𝑤 ∈ (∪ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀‘𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m ℕ0)
∣ 𝑣 finSupp 0
})∀𝑧 ∈
ℕ0 (𝑠 <
𝑧 → (𝑤‘𝑧) = 0 ) → ∃𝑠 ∈ ℕ0
∀𝑥 ∈
ℕ0 (𝑠 <
𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))) |
| 84 | 29, 83 | mpd 15 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → ∃𝑠 ∈ ℕ0 ∀𝑥 ∈ ℕ0
(𝑠 < 𝑥 → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )) |