MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcoe1fsupp Structured version   Visualization version   GIF version

Theorem pmatcoe1fsupp 22639
Description: For a polynomial matrix there is an upper bound for the coefficients of all the polynomials being not 0. (Contributed by AV, 3-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
pmatcoe1fsupp.p 𝑃 = (Poly1𝑅)
pmatcoe1fsupp.c 𝐶 = (𝑁 Mat 𝑃)
pmatcoe1fsupp.b 𝐵 = (Base‘𝐶)
pmatcoe1fsupp.0 0 = (0g𝑅)
Assertion
Ref Expression
pmatcoe1fsupp ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑠,𝑥   𝑖,𝑀,𝑗,𝑠,𝑥   𝑖,𝑁,𝑗,𝑠,𝑥   𝑅,𝑖,𝑗,𝑠,𝑥   0 ,𝑖,𝑗,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑖,𝑗,𝑠)   𝑃(𝑥,𝑖,𝑗,𝑠)

Proof of Theorem pmatcoe1fsupp
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4055 . . . . . 6 {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)
21a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0))
32olcd 874 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ⊆ ((Base‘𝑅) ↑m0) ∨ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)))
4 inss 4223 . . . 4 (( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ⊆ ((Base‘𝑅) ↑m0) ∨ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0))
53, 4syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0))
6 xpfi 9330 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
76anidms 566 . . . . . 6 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
8 snfi 9057 . . . . . . . 8 {(coe1‘(𝑀𝑢))} ∈ Fin
98a1i 11 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑢 ∈ (𝑁 × 𝑁)) → {(coe1‘(𝑀𝑢))} ∈ Fin)
109ralrimiva 3132 . . . . . 6 (𝑁 ∈ Fin → ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin)
117, 10jca 511 . . . . 5 (𝑁 ∈ Fin → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin))
12113ad2ant1 1133 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin))
13 iunfi 9355 . . . 4 (((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin) → 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin)
14 infi 9274 . . . 4 ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin)
1512, 13, 143syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin)
16 pmatcoe1fsupp.0 . . . . 5 0 = (0g𝑅)
17 fvex 6889 . . . . 5 (0g𝑅) ∈ V
1816, 17eqeltri 2830 . . . 4 0 ∈ V
1918a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ V)
20 elin 3942 . . . . . 6 (𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ↔ (𝑤 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∧ 𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }))
21 breq1 5122 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣 finSupp 0𝑤 finSupp 0 ))
2221elrab 3671 . . . . . . 7 (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (𝑤 ∈ ((Base‘𝑅) ↑m0) ∧ 𝑤 finSupp 0 ))
2322simprbi 496 . . . . . 6 (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } → 𝑤 finSupp 0 )
2420, 23simplbiim 504 . . . . 5 (𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) → 𝑤 finSupp 0 )
2524rgen 3053 . . . 4 𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0
2625a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 )
27 fsuppmapnn0fiub0 14011 . . . 4 ((( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0) ∧ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin ∧ 0 ∈ V) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )))
2827imp 406 . . 3 (((( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0) ∧ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin ∧ 0 ∈ V) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 ) → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ))
295, 15, 19, 26, 28syl31anc 1375 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ))
30 opelxpi 5691 . . . . . . . . . . . . . . 15 ((𝑖𝑁𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑁 × 𝑁))
31 df-ov 7408 . . . . . . . . . . . . . . . . . 18 (𝑖𝑀𝑗) = (𝑀‘⟨𝑖, 𝑗⟩)
3231fveq2i 6879 . . . . . . . . . . . . . . . . 17 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑀‘⟨𝑖, 𝑗⟩))
33 fvex 6889 . . . . . . . . . . . . . . . . . 18 (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)) ∈ V
3433snid 4638 . . . . . . . . . . . . . . . . 17 (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}
3532, 34eqeltri 2830 . . . . . . . . . . . . . . . 16 (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))})
37 2fveq3 6881 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑖, 𝑗⟩ → (coe1‘(𝑀𝑢)) = (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)))
3837sneqd 4613 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨𝑖, 𝑗⟩ → {(coe1‘(𝑀𝑢))} = {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))})
3938eliuni 4973 . . . . . . . . . . . . . . 15 ((⟨𝑖, 𝑗⟩ ∈ (𝑁 × 𝑁) ∧ (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
4030, 36, 39syl2anc 584 . . . . . . . . . . . . . 14 ((𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
4140adantl 481 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
42 pmatcoe1fsupp.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑁 Mat 𝑃)
43 eqid 2735 . . . . . . . . . . . . . . . 16 (Base‘𝑃) = (Base‘𝑃)
44 pmatcoe1fsupp.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐶)
45 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
46 simprr 772 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
4744eleq2i 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝐵𝑀 ∈ (Base‘𝐶))
4847biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑀𝐵𝑀 ∈ (Base‘𝐶))
49483ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐶))
5049ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀 ∈ (Base‘𝐶))
5150, 44eleqtrrdi 2845 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀𝐵)
5242, 43, 44, 45, 46, 51matecld 22364 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑀𝑗) ∈ (Base‘𝑃))
53 eqid 2735 . . . . . . . . . . . . . . . 16 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
54 pmatcoe1fsupp.p . . . . . . . . . . . . . . . 16 𝑃 = (Poly1𝑅)
55 eqid 2735 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
56 eqid 2735 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
5753, 43, 54, 55, 56coe1fsupp 22150 . . . . . . . . . . . . . . 15 ((𝑖𝑀𝑗) ∈ (Base‘𝑃) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
5852, 57syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
5916a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 = (0g𝑅))
6059breq2d 5131 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑣 finSupp 0𝑣 finSupp (0g𝑅)))
6160rabbidv 3423 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } = {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
6261eleq2d 2820 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)}))
6362ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)}))
6458, 63mpbird 257 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })
6541, 64elind 4175 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }))
66 simplr 768 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥 ∈ ℕ0)
67 fveq1 6875 . . . . . . . . . . . . . . 15 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → (𝑤𝑧) = ((coe1‘(𝑖𝑀𝑗))‘𝑧))
6867eqeq1d 2737 . . . . . . . . . . . . . 14 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑤𝑧) = 0 ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ))
6968imbi2d 340 . . . . . . . . . . . . 13 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑠 < 𝑧 → (𝑤𝑧) = 0 ) ↔ (𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 )))
70 breq2 5123 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑠 < 𝑧𝑠 < 𝑥))
71 fveqeq2 6885 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
7270, 71imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ) ↔ (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7369, 72rspc2v 3612 . . . . . . . . . . . 12 (((coe1‘(𝑖𝑀𝑗)) ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∧ 𝑥 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7465, 66, 73syl2anc 584 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7574ex 412 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7675com23 86 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7776impancom 451 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) → (𝑥 ∈ ℕ0 → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7877imp 406 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7978com23 86 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8079ralrimdvv 3188 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
8180ralrimiva 3132 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
8281ex 412 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8382reximdva 3153 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8429, 83mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wcel 2108  wral 3051  wrex 3060  {crab 3415  Vcvv 3459  cin 3925  wss 3926  {csn 4601  cop 4607   ciun 4967   class class class wbr 5119   × cxp 5652  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959   finSupp cfsupp 9373   < clt 11269  0cn0 12501  Basecbs 17228  0gc0g 17453  Ringcrg 20193  Poly1cpl1 22112  coe1cco1 22113   Mat cmat 22345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-prds 17461  df-pws 17463  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-psr 21869  df-mpl 21871  df-opsr 21873  df-psr1 22115  df-ply1 22117  df-coe1 22118  df-mat 22346
This theorem is referenced by:  decpmataa0  22706  decpmatmulsumfsupp  22711  pmatcollpw2lem  22715  pm2mpmhmlem1  22756
  Copyright terms: Public domain W3C validator