MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcoe1fsupp Structured version   Visualization version   GIF version

Theorem pmatcoe1fsupp 22203
Description: For a polynomial matrix there is an upper bound for the coefficients of all the polynomials being not 0. (Contributed by AV, 3-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
pmatcoe1fsupp.p 𝑃 = (Poly1𝑅)
pmatcoe1fsupp.c 𝐶 = (𝑁 Mat 𝑃)
pmatcoe1fsupp.b 𝐵 = (Base‘𝐶)
pmatcoe1fsupp.0 0 = (0g𝑅)
Assertion
Ref Expression
pmatcoe1fsupp ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑠,𝑥   𝑖,𝑀,𝑗,𝑠,𝑥   𝑖,𝑁,𝑗,𝑠,𝑥   𝑅,𝑖,𝑗,𝑠,𝑥   0 ,𝑖,𝑗,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑖,𝑗,𝑠)   𝑃(𝑥,𝑖,𝑗,𝑠)

Proof of Theorem pmatcoe1fsupp
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4078 . . . . . 6 {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)
21a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0))
32olcd 873 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ⊆ ((Base‘𝑅) ↑m0) ∨ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)))
4 inss 4239 . . . 4 (( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ⊆ ((Base‘𝑅) ↑m0) ∨ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0))
53, 4syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0))
6 xpfi 9317 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
76anidms 568 . . . . . 6 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
8 snfi 9044 . . . . . . . 8 {(coe1‘(𝑀𝑢))} ∈ Fin
98a1i 11 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑢 ∈ (𝑁 × 𝑁)) → {(coe1‘(𝑀𝑢))} ∈ Fin)
109ralrimiva 3147 . . . . . 6 (𝑁 ∈ Fin → ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin)
117, 10jca 513 . . . . 5 (𝑁 ∈ Fin → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin))
12113ad2ant1 1134 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin))
13 iunfi 9340 . . . 4 (((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin) → 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin)
14 infi 9268 . . . 4 ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin)
1512, 13, 143syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin)
16 pmatcoe1fsupp.0 . . . . 5 0 = (0g𝑅)
17 fvex 6905 . . . . 5 (0g𝑅) ∈ V
1816, 17eqeltri 2830 . . . 4 0 ∈ V
1918a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ V)
20 elin 3965 . . . . . 6 (𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ↔ (𝑤 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∧ 𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }))
21 breq1 5152 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣 finSupp 0𝑤 finSupp 0 ))
2221elrab 3684 . . . . . . 7 (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (𝑤 ∈ ((Base‘𝑅) ↑m0) ∧ 𝑤 finSupp 0 ))
2322simprbi 498 . . . . . 6 (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } → 𝑤 finSupp 0 )
2420, 23simplbiim 506 . . . . 5 (𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) → 𝑤 finSupp 0 )
2524rgen 3064 . . . 4 𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0
2625a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 )
27 fsuppmapnn0fiub0 13958 . . . 4 ((( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0) ∧ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin ∧ 0 ∈ V) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )))
2827imp 408 . . 3 (((( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0) ∧ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin ∧ 0 ∈ V) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 ) → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ))
295, 15, 19, 26, 28syl31anc 1374 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ))
30 opelxpi 5714 . . . . . . . . . . . . . . 15 ((𝑖𝑁𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑁 × 𝑁))
31 df-ov 7412 . . . . . . . . . . . . . . . . . 18 (𝑖𝑀𝑗) = (𝑀‘⟨𝑖, 𝑗⟩)
3231fveq2i 6895 . . . . . . . . . . . . . . . . 17 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑀‘⟨𝑖, 𝑗⟩))
33 fvex 6905 . . . . . . . . . . . . . . . . . 18 (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)) ∈ V
3433snid 4665 . . . . . . . . . . . . . . . . 17 (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}
3532, 34eqeltri 2830 . . . . . . . . . . . . . . . 16 (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))})
37 2fveq3 6897 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑖, 𝑗⟩ → (coe1‘(𝑀𝑢)) = (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)))
3837sneqd 4641 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨𝑖, 𝑗⟩ → {(coe1‘(𝑀𝑢))} = {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))})
3938eliuni 5004 . . . . . . . . . . . . . . 15 ((⟨𝑖, 𝑗⟩ ∈ (𝑁 × 𝑁) ∧ (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
4030, 36, 39syl2anc 585 . . . . . . . . . . . . . 14 ((𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
4140adantl 483 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
42 pmatcoe1fsupp.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑁 Mat 𝑃)
43 eqid 2733 . . . . . . . . . . . . . . . 16 (Base‘𝑃) = (Base‘𝑃)
44 pmatcoe1fsupp.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐶)
45 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
46 simprr 772 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
4744eleq2i 2826 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝐵𝑀 ∈ (Base‘𝐶))
4847biimpi 215 . . . . . . . . . . . . . . . . . . 19 (𝑀𝐵𝑀 ∈ (Base‘𝐶))
49483ad2ant3 1136 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐶))
5049ad3antrrr 729 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀 ∈ (Base‘𝐶))
5150, 44eleqtrrdi 2845 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀𝐵)
5242, 43, 44, 45, 46, 51matecld 21928 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑀𝑗) ∈ (Base‘𝑃))
53 eqid 2733 . . . . . . . . . . . . . . . 16 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
54 pmatcoe1fsupp.p . . . . . . . . . . . . . . . 16 𝑃 = (Poly1𝑅)
55 eqid 2733 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
56 eqid 2733 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
5753, 43, 54, 55, 56coe1fsupp 21738 . . . . . . . . . . . . . . 15 ((𝑖𝑀𝑗) ∈ (Base‘𝑃) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
5852, 57syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
5916a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 = (0g𝑅))
6059breq2d 5161 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑣 finSupp 0𝑣 finSupp (0g𝑅)))
6160rabbidv 3441 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } = {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
6261eleq2d 2820 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)}))
6362ad3antrrr 729 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)}))
6458, 63mpbird 257 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })
6541, 64elind 4195 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }))
66 simplr 768 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥 ∈ ℕ0)
67 fveq1 6891 . . . . . . . . . . . . . . 15 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → (𝑤𝑧) = ((coe1‘(𝑖𝑀𝑗))‘𝑧))
6867eqeq1d 2735 . . . . . . . . . . . . . 14 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑤𝑧) = 0 ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ))
6968imbi2d 341 . . . . . . . . . . . . 13 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑠 < 𝑧 → (𝑤𝑧) = 0 ) ↔ (𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 )))
70 breq2 5153 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑠 < 𝑧𝑠 < 𝑥))
71 fveqeq2 6901 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
7270, 71imbi12d 345 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ) ↔ (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7369, 72rspc2v 3623 . . . . . . . . . . . 12 (((coe1‘(𝑖𝑀𝑗)) ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∧ 𝑥 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7465, 66, 73syl2anc 585 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7574ex 414 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7675com23 86 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7776impancom 453 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) → (𝑥 ∈ ℕ0 → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7877imp 408 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7978com23 86 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8079ralrimdvv 3202 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
8180ralrimiva 3147 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
8281ex 414 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8382reximdva 3169 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8429, 83mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wo 846  w3a 1088   = wceq 1542  wcel 2107  wral 3062  wrex 3071  {crab 3433  Vcvv 3475  cin 3948  wss 3949  {csn 4629  cop 4635   ciun 4998   class class class wbr 5149   × cxp 5675  cfv 6544  (class class class)co 7409  m cmap 8820  Fincfn 8939   finSupp cfsupp 9361   < clt 11248  0cn0 12472  Basecbs 17144  0gc0g 17385  Ringcrg 20056  Poly1cpl1 21701  coe1cco1 21702   Mat cmat 21907
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5364  ax-pr 5428  ax-un 7725  ax-cnex 11166  ax-resscn 11167  ax-1cn 11168  ax-icn 11169  ax-addcl 11170  ax-addrcl 11171  ax-mulcl 11172  ax-mulrcl 11173  ax-mulcom 11174  ax-addass 11175  ax-mulass 11176  ax-distr 11177  ax-i2m1 11178  ax-1ne0 11179  ax-1rid 11180  ax-rnegex 11181  ax-rrecex 11182  ax-cnre 11183  ax-pre-lttri 11184  ax-pre-lttrn 11185  ax-pre-ltadd 11186  ax-pre-mulgt0 11187
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3377  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-tp 4634  df-op 4636  df-ot 4638  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-riota 7365  df-ov 7412  df-oprab 7413  df-mpo 7414  df-of 7670  df-om 7856  df-1st 7975  df-2nd 7976  df-supp 8147  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410  df-1o 8466  df-er 8703  df-map 8822  df-ixp 8892  df-en 8940  df-dom 8941  df-sdom 8942  df-fin 8943  df-fsupp 9362  df-sup 9437  df-pnf 11250  df-mnf 11251  df-xr 11252  df-ltxr 11253  df-le 11254  df-sub 11446  df-neg 11447  df-nn 12213  df-2 12275  df-3 12276  df-4 12277  df-5 12278  df-6 12279  df-7 12280  df-8 12281  df-9 12282  df-n0 12473  df-z 12559  df-dec 12678  df-uz 12823  df-fz 13485  df-struct 17080  df-sets 17097  df-slot 17115  df-ndx 17127  df-base 17145  df-ress 17174  df-plusg 17210  df-mulr 17211  df-sca 17213  df-vsca 17214  df-ip 17215  df-tset 17216  df-ple 17217  df-ds 17219  df-hom 17221  df-cco 17222  df-0g 17387  df-prds 17393  df-pws 17395  df-sra 20785  df-rgmod 20786  df-dsmm 21287  df-frlm 21302  df-psr 21462  df-mpl 21464  df-opsr 21466  df-psr1 21704  df-ply1 21706  df-coe1 21707  df-mat 21908
This theorem is referenced by:  decpmataa0  22270  decpmatmulsumfsupp  22275  pmatcollpw2lem  22279  pm2mpmhmlem1  22320
  Copyright terms: Public domain W3C validator