MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcoe1fsupp Structured version   Visualization version   GIF version

Theorem pmatcoe1fsupp 21850
Description: For a polynomial matrix there is an upper bound for the coefficients of all the polynomials being not 0. (Contributed by AV, 3-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
pmatcoe1fsupp.p 𝑃 = (Poly1𝑅)
pmatcoe1fsupp.c 𝐶 = (𝑁 Mat 𝑃)
pmatcoe1fsupp.b 𝐵 = (Base‘𝐶)
pmatcoe1fsupp.0 0 = (0g𝑅)
Assertion
Ref Expression
pmatcoe1fsupp ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑠,𝑥   𝑖,𝑀,𝑗,𝑠,𝑥   𝑖,𝑁,𝑗,𝑠,𝑥   𝑅,𝑖,𝑗,𝑠,𝑥   0 ,𝑖,𝑗,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑖,𝑗,𝑠)   𝑃(𝑥,𝑖,𝑗,𝑠)

Proof of Theorem pmatcoe1fsupp
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4013 . . . . . 6 {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)
21a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0))
32olcd 871 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ⊆ ((Base‘𝑅) ↑m0) ∨ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)))
4 inss 4172 . . . 4 (( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ⊆ ((Base‘𝑅) ↑m0) ∨ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0))
53, 4syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0))
6 xpfi 9085 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
76anidms 567 . . . . . 6 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
8 snfi 8834 . . . . . . . 8 {(coe1‘(𝑀𝑢))} ∈ Fin
98a1i 11 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑢 ∈ (𝑁 × 𝑁)) → {(coe1‘(𝑀𝑢))} ∈ Fin)
109ralrimiva 3103 . . . . . 6 (𝑁 ∈ Fin → ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin)
117, 10jca 512 . . . . 5 (𝑁 ∈ Fin → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin))
12113ad2ant1 1132 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin))
13 iunfi 9107 . . . 4 (((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin) → 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin)
14 infi 9043 . . . 4 ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin)
1512, 13, 143syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin)
16 pmatcoe1fsupp.0 . . . . 5 0 = (0g𝑅)
17 fvex 6787 . . . . 5 (0g𝑅) ∈ V
1816, 17eqeltri 2835 . . . 4 0 ∈ V
1918a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ V)
20 elin 3903 . . . . . 6 (𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ↔ (𝑤 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∧ 𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }))
21 breq1 5077 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣 finSupp 0𝑤 finSupp 0 ))
2221elrab 3624 . . . . . . 7 (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (𝑤 ∈ ((Base‘𝑅) ↑m0) ∧ 𝑤 finSupp 0 ))
2322simprbi 497 . . . . . 6 (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } → 𝑤 finSupp 0 )
2420, 23simplbiim 505 . . . . 5 (𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) → 𝑤 finSupp 0 )
2524rgen 3074 . . . 4 𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0
2625a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 )
27 fsuppmapnn0fiub0 13713 . . . 4 ((( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0) ∧ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin ∧ 0 ∈ V) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )))
2827imp 407 . . 3 (((( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0) ∧ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin ∧ 0 ∈ V) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 ) → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ))
295, 15, 19, 26, 28syl31anc 1372 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ))
30 opelxpi 5626 . . . . . . . . . . . . . . 15 ((𝑖𝑁𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑁 × 𝑁))
31 df-ov 7278 . . . . . . . . . . . . . . . . . 18 (𝑖𝑀𝑗) = (𝑀‘⟨𝑖, 𝑗⟩)
3231fveq2i 6777 . . . . . . . . . . . . . . . . 17 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑀‘⟨𝑖, 𝑗⟩))
33 fvex 6787 . . . . . . . . . . . . . . . . . 18 (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)) ∈ V
3433snid 4597 . . . . . . . . . . . . . . . . 17 (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}
3532, 34eqeltri 2835 . . . . . . . . . . . . . . . 16 (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))})
37 2fveq3 6779 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑖, 𝑗⟩ → (coe1‘(𝑀𝑢)) = (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)))
3837sneqd 4573 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨𝑖, 𝑗⟩ → {(coe1‘(𝑀𝑢))} = {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))})
3938eliuni 4930 . . . . . . . . . . . . . . 15 ((⟨𝑖, 𝑗⟩ ∈ (𝑁 × 𝑁) ∧ (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
4030, 36, 39syl2anc 584 . . . . . . . . . . . . . 14 ((𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
4140adantl 482 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
42 pmatcoe1fsupp.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑁 Mat 𝑃)
43 eqid 2738 . . . . . . . . . . . . . . . 16 (Base‘𝑃) = (Base‘𝑃)
44 pmatcoe1fsupp.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐶)
45 simprl 768 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
46 simprr 770 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
4744eleq2i 2830 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝐵𝑀 ∈ (Base‘𝐶))
4847biimpi 215 . . . . . . . . . . . . . . . . . . 19 (𝑀𝐵𝑀 ∈ (Base‘𝐶))
49483ad2ant3 1134 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐶))
5049ad3antrrr 727 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀 ∈ (Base‘𝐶))
5150, 44eleqtrrdi 2850 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀𝐵)
5242, 43, 44, 45, 46, 51matecld 21575 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑀𝑗) ∈ (Base‘𝑃))
53 eqid 2738 . . . . . . . . . . . . . . . 16 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
54 pmatcoe1fsupp.p . . . . . . . . . . . . . . . 16 𝑃 = (Poly1𝑅)
55 eqid 2738 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
56 eqid 2738 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
5753, 43, 54, 55, 56coe1fsupp 21385 . . . . . . . . . . . . . . 15 ((𝑖𝑀𝑗) ∈ (Base‘𝑃) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
5852, 57syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
5916a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 = (0g𝑅))
6059breq2d 5086 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑣 finSupp 0𝑣 finSupp (0g𝑅)))
6160rabbidv 3414 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } = {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
6261eleq2d 2824 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)}))
6362ad3antrrr 727 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)}))
6458, 63mpbird 256 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })
6541, 64elind 4128 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }))
66 simplr 766 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥 ∈ ℕ0)
67 fveq1 6773 . . . . . . . . . . . . . . 15 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → (𝑤𝑧) = ((coe1‘(𝑖𝑀𝑗))‘𝑧))
6867eqeq1d 2740 . . . . . . . . . . . . . 14 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑤𝑧) = 0 ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ))
6968imbi2d 341 . . . . . . . . . . . . 13 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑠 < 𝑧 → (𝑤𝑧) = 0 ) ↔ (𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 )))
70 breq2 5078 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑠 < 𝑧𝑠 < 𝑥))
71 fveqeq2 6783 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
7270, 71imbi12d 345 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ) ↔ (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7369, 72rspc2v 3570 . . . . . . . . . . . 12 (((coe1‘(𝑖𝑀𝑗)) ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∧ 𝑥 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7465, 66, 73syl2anc 584 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7574ex 413 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7675com23 86 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7776impancom 452 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) → (𝑥 ∈ ℕ0 → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7877imp 407 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7978com23 86 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8079ralrimdvv 3124 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
8180ralrimiva 3103 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
8281ex 413 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8382reximdva 3203 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8429, 83mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wcel 2106  wral 3064  wrex 3065  {crab 3068  Vcvv 3432  cin 3886  wss 3887  {csn 4561  cop 4567   ciun 4924   class class class wbr 5074   × cxp 5587  cfv 6433  (class class class)co 7275  m cmap 8615  Fincfn 8733   finSupp cfsupp 9128   < clt 11009  0cn0 12233  Basecbs 16912  0gc0g 17150  Ringcrg 19783  Poly1cpl1 21348  coe1cco1 21349   Mat cmat 21554
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-ot 4570  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-prds 17158  df-pws 17160  df-sra 20434  df-rgmod 20435  df-dsmm 20939  df-frlm 20954  df-psr 21112  df-mpl 21114  df-opsr 21116  df-psr1 21351  df-ply1 21353  df-coe1 21354  df-mat 21555
This theorem is referenced by:  decpmataa0  21917  decpmatmulsumfsupp  21922  pmatcollpw2lem  21926  pm2mpmhmlem1  21967
  Copyright terms: Public domain W3C validator