MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcoe1fsupp Structured version   Visualization version   GIF version

Theorem pmatcoe1fsupp 22617
Description: For a polynomial matrix there is an upper bound for the coefficients of all the polynomials being not 0. (Contributed by AV, 3-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
pmatcoe1fsupp.p 𝑃 = (Poly1𝑅)
pmatcoe1fsupp.c 𝐶 = (𝑁 Mat 𝑃)
pmatcoe1fsupp.b 𝐵 = (Base‘𝐶)
pmatcoe1fsupp.0 0 = (0g𝑅)
Assertion
Ref Expression
pmatcoe1fsupp ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑠,𝑥   𝑖,𝑀,𝑗,𝑠,𝑥   𝑖,𝑁,𝑗,𝑠,𝑥   𝑅,𝑖,𝑗,𝑠,𝑥   0 ,𝑖,𝑗,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑖,𝑗,𝑠)   𝑃(𝑥,𝑖,𝑗,𝑠)

Proof of Theorem pmatcoe1fsupp
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4029 . . . . . 6 {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)
21a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0))
32olcd 874 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ⊆ ((Base‘𝑅) ↑m0) ∨ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)))
4 inss 4197 . . . 4 (( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ⊆ ((Base‘𝑅) ↑m0) ∨ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0))
53, 4syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0))
6 xpfi 9211 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
76anidms 566 . . . . . 6 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
8 snfi 8972 . . . . . . . 8 {(coe1‘(𝑀𝑢))} ∈ Fin
98a1i 11 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑢 ∈ (𝑁 × 𝑁)) → {(coe1‘(𝑀𝑢))} ∈ Fin)
109ralrimiva 3125 . . . . . 6 (𝑁 ∈ Fin → ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin)
117, 10jca 511 . . . . 5 (𝑁 ∈ Fin → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin))
12113ad2ant1 1133 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin))
13 iunfi 9234 . . . 4 (((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin) → 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin)
14 infi 9161 . . . 4 ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin)
1512, 13, 143syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin)
16 pmatcoe1fsupp.0 . . . . 5 0 = (0g𝑅)
17 fvex 6841 . . . . 5 (0g𝑅) ∈ V
1816, 17eqeltri 2829 . . . 4 0 ∈ V
1918a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ V)
20 elin 3914 . . . . . 6 (𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ↔ (𝑤 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∧ 𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }))
21 breq1 5096 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣 finSupp 0𝑤 finSupp 0 ))
2221elrab 3643 . . . . . . 7 (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (𝑤 ∈ ((Base‘𝑅) ↑m0) ∧ 𝑤 finSupp 0 ))
2322simprbi 496 . . . . . 6 (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } → 𝑤 finSupp 0 )
2420, 23simplbiim 504 . . . . 5 (𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) → 𝑤 finSupp 0 )
2524rgen 3050 . . . 4 𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0
2625a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 )
27 fsuppmapnn0fiub0 13902 . . . 4 ((( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0) ∧ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin ∧ 0 ∈ V) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )))
2827imp 406 . . 3 (((( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0) ∧ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin ∧ 0 ∈ V) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 ) → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ))
295, 15, 19, 26, 28syl31anc 1375 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ))
30 opelxpi 5656 . . . . . . . . . . . . . . 15 ((𝑖𝑁𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑁 × 𝑁))
31 df-ov 7355 . . . . . . . . . . . . . . . . . 18 (𝑖𝑀𝑗) = (𝑀‘⟨𝑖, 𝑗⟩)
3231fveq2i 6831 . . . . . . . . . . . . . . . . 17 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑀‘⟨𝑖, 𝑗⟩))
33 fvex 6841 . . . . . . . . . . . . . . . . . 18 (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)) ∈ V
3433snid 4614 . . . . . . . . . . . . . . . . 17 (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}
3532, 34eqeltri 2829 . . . . . . . . . . . . . . . 16 (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))})
37 2fveq3 6833 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑖, 𝑗⟩ → (coe1‘(𝑀𝑢)) = (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)))
3837sneqd 4587 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨𝑖, 𝑗⟩ → {(coe1‘(𝑀𝑢))} = {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))})
3938eliuni 4947 . . . . . . . . . . . . . . 15 ((⟨𝑖, 𝑗⟩ ∈ (𝑁 × 𝑁) ∧ (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
4030, 36, 39syl2anc 584 . . . . . . . . . . . . . 14 ((𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
4140adantl 481 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
42 pmatcoe1fsupp.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑁 Mat 𝑃)
43 eqid 2733 . . . . . . . . . . . . . . . 16 (Base‘𝑃) = (Base‘𝑃)
44 pmatcoe1fsupp.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐶)
45 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
46 simprr 772 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
4744eleq2i 2825 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝐵𝑀 ∈ (Base‘𝐶))
4847biimpi 216 . . . . . . . . . . . . . . . . . . 19 (𝑀𝐵𝑀 ∈ (Base‘𝐶))
49483ad2ant3 1135 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐶))
5049ad3antrrr 730 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀 ∈ (Base‘𝐶))
5150, 44eleqtrrdi 2844 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀𝐵)
5242, 43, 44, 45, 46, 51matecld 22342 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑀𝑗) ∈ (Base‘𝑃))
53 eqid 2733 . . . . . . . . . . . . . . . 16 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
54 pmatcoe1fsupp.p . . . . . . . . . . . . . . . 16 𝑃 = (Poly1𝑅)
55 eqid 2733 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
56 eqid 2733 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
5753, 43, 54, 55, 56coe1fsupp 22128 . . . . . . . . . . . . . . 15 ((𝑖𝑀𝑗) ∈ (Base‘𝑃) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
5852, 57syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
5916a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 = (0g𝑅))
6059breq2d 5105 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑣 finSupp 0𝑣 finSupp (0g𝑅)))
6160rabbidv 3403 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } = {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
6261eleq2d 2819 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)}))
6362ad3antrrr 730 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)}))
6458, 63mpbird 257 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })
6541, 64elind 4149 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }))
66 simplr 768 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥 ∈ ℕ0)
67 fveq1 6827 . . . . . . . . . . . . . . 15 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → (𝑤𝑧) = ((coe1‘(𝑖𝑀𝑗))‘𝑧))
6867eqeq1d 2735 . . . . . . . . . . . . . 14 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑤𝑧) = 0 ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ))
6968imbi2d 340 . . . . . . . . . . . . 13 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑠 < 𝑧 → (𝑤𝑧) = 0 ) ↔ (𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 )))
70 breq2 5097 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑠 < 𝑧𝑠 < 𝑥))
71 fveqeq2 6837 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
7270, 71imbi12d 344 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ) ↔ (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7369, 72rspc2v 3584 . . . . . . . . . . . 12 (((coe1‘(𝑖𝑀𝑗)) ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∧ 𝑥 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7465, 66, 73syl2anc 584 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7574ex 412 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7675com23 86 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7776impancom 451 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) → (𝑥 ∈ ℕ0 → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7877imp 406 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7978com23 86 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8079ralrimdvv 3177 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
8180ralrimiva 3125 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
8281ex 412 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8382reximdva 3146 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8429, 83mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1541  wcel 2113  wral 3048  wrex 3057  {crab 3396  Vcvv 3437  cin 3897  wss 3898  {csn 4575  cop 4581   ciun 4941   class class class wbr 5093   × cxp 5617  cfv 6486  (class class class)co 7352  m cmap 8756  Fincfn 8875   finSupp cfsupp 9252   < clt 11153  0cn0 12388  Basecbs 17122  0gc0g 17345  Ringcrg 20153  Poly1cpl1 22090  coe1cco1 22091   Mat cmat 22323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11069  ax-resscn 11070  ax-1cn 11071  ax-icn 11072  ax-addcl 11073  ax-addrcl 11074  ax-mulcl 11075  ax-mulrcl 11076  ax-mulcom 11077  ax-addass 11078  ax-mulass 11079  ax-distr 11080  ax-i2m1 11081  ax-1ne0 11082  ax-1rid 11083  ax-rnegex 11084  ax-rrecex 11085  ax-cnre 11086  ax-pre-lttri 11087  ax-pre-lttrn 11088  ax-pre-ltadd 11089  ax-pre-mulgt0 11090
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-tp 4580  df-op 4582  df-ot 4584  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-of 7616  df-om 7803  df-1st 7927  df-2nd 7928  df-supp 8097  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-map 8758  df-ixp 8828  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-fsupp 9253  df-sup 9333  df-pnf 11155  df-mnf 11156  df-xr 11157  df-ltxr 11158  df-le 11159  df-sub 11353  df-neg 11354  df-nn 12133  df-2 12195  df-3 12196  df-4 12197  df-5 12198  df-6 12199  df-7 12200  df-8 12201  df-9 12202  df-n0 12389  df-z 12476  df-dec 12595  df-uz 12739  df-fz 13410  df-struct 17060  df-sets 17077  df-slot 17095  df-ndx 17107  df-base 17123  df-ress 17144  df-plusg 17176  df-mulr 17177  df-sca 17179  df-vsca 17180  df-ip 17181  df-tset 17182  df-ple 17183  df-ds 17185  df-hom 17187  df-cco 17188  df-0g 17347  df-prds 17353  df-pws 17355  df-sra 21109  df-rgmod 21110  df-dsmm 21671  df-frlm 21686  df-psr 21848  df-mpl 21850  df-opsr 21852  df-psr1 22093  df-ply1 22095  df-coe1 22096  df-mat 22324
This theorem is referenced by:  decpmataa0  22684  decpmatmulsumfsupp  22689  pmatcollpw2lem  22693  pm2mpmhmlem1  22734
  Copyright terms: Public domain W3C validator