MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  pmatcoe1fsupp Structured version   Visualization version   GIF version

Theorem pmatcoe1fsupp 21306
Description: For a polynomial matrix there is an upper bound for the coefficients of all the polynomials being not 0. (Contributed by AV, 3-Oct-2019.) (Proof shortened by AV, 28-Nov-2019.)
Hypotheses
Ref Expression
pmatcoe1fsupp.p 𝑃 = (Poly1𝑅)
pmatcoe1fsupp.c 𝐶 = (𝑁 Mat 𝑃)
pmatcoe1fsupp.b 𝐵 = (Base‘𝐶)
pmatcoe1fsupp.0 0 = (0g𝑅)
Assertion
Ref Expression
pmatcoe1fsupp ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
Distinct variable groups:   𝐵,𝑖,𝑗,𝑠,𝑥   𝑖,𝑀,𝑗,𝑠,𝑥   𝑖,𝑁,𝑗,𝑠,𝑥   𝑅,𝑖,𝑗,𝑠,𝑥   0 ,𝑖,𝑗,𝑠,𝑥
Allowed substitution hints:   𝐶(𝑥,𝑖,𝑗,𝑠)   𝑃(𝑥,𝑖,𝑗,𝑠)

Proof of Theorem pmatcoe1fsupp
Dummy variables 𝑣 𝑢 𝑤 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssrab2 4007 . . . . . 6 {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)
21a1i 11 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0))
32olcd 871 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ⊆ ((Base‘𝑅) ↑m0) ∨ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)))
4 inss 4165 . . . 4 (( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ⊆ ((Base‘𝑅) ↑m0) ∨ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ⊆ ((Base‘𝑅) ↑m0)) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0))
53, 4syl 17 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0))
6 xpfi 8773 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑁 ∈ Fin) → (𝑁 × 𝑁) ∈ Fin)
76anidms 570 . . . . . 6 (𝑁 ∈ Fin → (𝑁 × 𝑁) ∈ Fin)
8 snfi 8577 . . . . . . . 8 {(coe1‘(𝑀𝑢))} ∈ Fin
98a1i 11 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑢 ∈ (𝑁 × 𝑁)) → {(coe1‘(𝑀𝑢))} ∈ Fin)
109ralrimiva 3149 . . . . . 6 (𝑁 ∈ Fin → ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin)
117, 10jca 515 . . . . 5 (𝑁 ∈ Fin → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin))
12113ad2ant1 1130 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin))
13 iunfi 8796 . . . 4 (((𝑁 × 𝑁) ∈ Fin ∧ ∀𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin) → 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin)
14 infi 8726 . . . 4 ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∈ Fin → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin)
1512, 13, 143syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin)
16 pmatcoe1fsupp.0 . . . . 5 0 = (0g𝑅)
17 fvex 6658 . . . . 5 (0g𝑅) ∈ V
1816, 17eqeltri 2886 . . . 4 0 ∈ V
1918a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 ∈ V)
20 elin 3897 . . . . . 6 (𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ↔ (𝑤 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∧ 𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }))
21 breq1 5033 . . . . . . . 8 (𝑣 = 𝑤 → (𝑣 finSupp 0𝑤 finSupp 0 ))
2221elrab 3628 . . . . . . 7 (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (𝑤 ∈ ((Base‘𝑅) ↑m0) ∧ 𝑤 finSupp 0 ))
2322simprbi 500 . . . . . 6 (𝑤 ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } → 𝑤 finSupp 0 )
2420, 23simplbiim 508 . . . . 5 (𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) → 𝑤 finSupp 0 )
2524rgen 3116 . . . 4 𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0
2625a1i 11 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 )
27 fsuppmapnn0fiub0 13356 . . . 4 ((( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0) ∧ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin ∧ 0 ∈ V) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )))
2827imp 410 . . 3 (((( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ⊆ ((Base‘𝑅) ↑m0) ∧ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∈ Fin ∧ 0 ∈ V) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })𝑤 finSupp 0 ) → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ))
295, 15, 19, 26, 28syl31anc 1370 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ))
30 opelxpi 5556 . . . . . . . . . . . . . . 15 ((𝑖𝑁𝑗𝑁) → ⟨𝑖, 𝑗⟩ ∈ (𝑁 × 𝑁))
31 df-ov 7138 . . . . . . . . . . . . . . . . . 18 (𝑖𝑀𝑗) = (𝑀‘⟨𝑖, 𝑗⟩)
3231fveq2i 6648 . . . . . . . . . . . . . . . . 17 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑀‘⟨𝑖, 𝑗⟩))
33 fvex 6658 . . . . . . . . . . . . . . . . . 18 (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)) ∈ V
3433snid 4561 . . . . . . . . . . . . . . . . 17 (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}
3532, 34eqeltri 2886 . . . . . . . . . . . . . . . 16 (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}
3635a1i 11 . . . . . . . . . . . . . . 15 ((𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))})
37 2fveq3 6650 . . . . . . . . . . . . . . . . 17 (𝑢 = ⟨𝑖, 𝑗⟩ → (coe1‘(𝑀𝑢)) = (coe1‘(𝑀‘⟨𝑖, 𝑗⟩)))
3837sneqd 4537 . . . . . . . . . . . . . . . 16 (𝑢 = ⟨𝑖, 𝑗⟩ → {(coe1‘(𝑀𝑢))} = {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))})
3938eliuni 4887 . . . . . . . . . . . . . . 15 ((⟨𝑖, 𝑗⟩ ∈ (𝑁 × 𝑁) ∧ (coe1‘(𝑖𝑀𝑗)) ∈ {(coe1‘(𝑀‘⟨𝑖, 𝑗⟩))}) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
4030, 36, 39syl2anc 587 . . . . . . . . . . . . . 14 ((𝑖𝑁𝑗𝑁) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
4140adantl 485 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))})
42 pmatcoe1fsupp.c . . . . . . . . . . . . . . . 16 𝐶 = (𝑁 Mat 𝑃)
43 eqid 2798 . . . . . . . . . . . . . . . 16 (Base‘𝑃) = (Base‘𝑃)
44 pmatcoe1fsupp.b . . . . . . . . . . . . . . . 16 𝐵 = (Base‘𝐶)
45 simprl 770 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
46 simprr 772 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
4744eleq2i 2881 . . . . . . . . . . . . . . . . . . . 20 (𝑀𝐵𝑀 ∈ (Base‘𝐶))
4847biimpi 219 . . . . . . . . . . . . . . . . . . 19 (𝑀𝐵𝑀 ∈ (Base‘𝐶))
49483ad2ant3 1132 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐶))
5049ad3antrrr 729 . . . . . . . . . . . . . . . . 17 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀 ∈ (Base‘𝐶))
5150, 44eleqtrrdi 2901 . . . . . . . . . . . . . . . 16 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀𝐵)
5242, 43, 44, 45, 46, 51matecld 21031 . . . . . . . . . . . . . . 15 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑀𝑗) ∈ (Base‘𝑃))
53 eqid 2798 . . . . . . . . . . . . . . . 16 (coe1‘(𝑖𝑀𝑗)) = (coe1‘(𝑖𝑀𝑗))
54 pmatcoe1fsupp.p . . . . . . . . . . . . . . . 16 𝑃 = (Poly1𝑅)
55 eqid 2798 . . . . . . . . . . . . . . . 16 (0g𝑅) = (0g𝑅)
56 eqid 2798 . . . . . . . . . . . . . . . 16 (Base‘𝑅) = (Base‘𝑅)
5753, 43, 54, 55, 56coe1fsupp 20843 . . . . . . . . . . . . . . 15 ((𝑖𝑀𝑗) ∈ (Base‘𝑃) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
5852, 57syl 17 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
5916a1i 11 . . . . . . . . . . . . . . . . . 18 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → 0 = (0g𝑅))
6059breq2d 5042 . . . . . . . . . . . . . . . . 17 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑣 finSupp 0𝑣 finSupp (0g𝑅)))
6160rabbidv 3427 . . . . . . . . . . . . . . . 16 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } = {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)})
6261eleq2d 2875 . . . . . . . . . . . . . . 15 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)}))
6362ad3antrrr 729 . . . . . . . . . . . . . 14 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → ((coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 } ↔ (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp (0g𝑅)}))
6458, 63mpbird 260 . . . . . . . . . . . . 13 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })
6541, 64elind 4121 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (coe1‘(𝑖𝑀𝑗)) ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }))
66 simplr 768 . . . . . . . . . . . 12 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → 𝑥 ∈ ℕ0)
67 fveq1 6644 . . . . . . . . . . . . . . 15 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → (𝑤𝑧) = ((coe1‘(𝑖𝑀𝑗))‘𝑧))
6867eqeq1d 2800 . . . . . . . . . . . . . 14 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑤𝑧) = 0 ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ))
6968imbi2d 344 . . . . . . . . . . . . 13 (𝑤 = (coe1‘(𝑖𝑀𝑗)) → ((𝑠 < 𝑧 → (𝑤𝑧) = 0 ) ↔ (𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 )))
70 breq2 5034 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (𝑠 < 𝑧𝑠 < 𝑥))
71 fveqeq2 6654 . . . . . . . . . . . . . 14 (𝑧 = 𝑥 → (((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ↔ ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
7270, 71imbi12d 348 . . . . . . . . . . . . 13 (𝑧 = 𝑥 → ((𝑠 < 𝑧 → ((coe1‘(𝑖𝑀𝑗))‘𝑧) = 0 ) ↔ (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7369, 72rspc2v 3581 . . . . . . . . . . . 12 (((coe1‘(𝑖𝑀𝑗)) ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 }) ∧ 𝑥 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7465, 66, 73syl2anc 587 . . . . . . . . . . 11 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) ∧ (𝑖𝑁𝑗𝑁)) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7574ex 416 . . . . . . . . . 10 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7675com23 86 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ 𝑥 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7776impancom 455 . . . . . . . 8 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) → (𝑥 ∈ ℕ0 → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))))
7877imp 410 . . . . . . 7 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → ((𝑖𝑁𝑗𝑁) → (𝑠 < 𝑥 → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
7978com23 86 . . . . . 6 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → ((𝑖𝑁𝑗𝑁) → ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8079ralrimdvv 3158 . . . . 5 (((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) ∧ 𝑥 ∈ ℕ0) → (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
8180ralrimiva 3149 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) ∧ ∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 )) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
8281ex 416 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) ∧ 𝑠 ∈ ℕ0) → (∀𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ∀𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8382reximdva 3233 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (∃𝑠 ∈ ℕ0𝑤 ∈ ( 𝑢 ∈ (𝑁 × 𝑁){(coe1‘(𝑀𝑢))} ∩ {𝑣 ∈ ((Base‘𝑅) ↑m0) ∣ 𝑣 finSupp 0 })∀𝑧 ∈ ℕ0 (𝑠 < 𝑧 → (𝑤𝑧) = 0 ) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 )))
8429, 83mpd 15 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → ∃𝑠 ∈ ℕ0𝑥 ∈ ℕ0 (𝑠 < 𝑥 → ∀𝑖𝑁𝑗𝑁 ((coe1‘(𝑖𝑀𝑗))‘𝑥) = 0 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  wo 844  w3a 1084   = wceq 1538  wcel 2111  wral 3106  wrex 3107  {crab 3110  Vcvv 3441  cin 3880  wss 3881  {csn 4525  cop 4531   ciun 4881   class class class wbr 5030   × cxp 5517  cfv 6324  (class class class)co 7135  m cmap 8389  Fincfn 8492   finSupp cfsupp 8817   < clt 10664  0cn0 11885  Basecbs 16475  0gc0g 16705  Ringcrg 19290  Poly1cpl1 20806  coe1cco1 20807   Mat cmat 21012
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-ot 4534  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-of 7389  df-om 7561  df-1st 7671  df-2nd 7672  df-supp 7814  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-oadd 8089  df-er 8272  df-map 8391  df-ixp 8445  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-fsupp 8818  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-3 11689  df-4 11690  df-5 11691  df-6 11692  df-7 11693  df-8 11694  df-9 11695  df-n0 11886  df-z 11970  df-dec 12087  df-uz 12232  df-fz 12886  df-struct 16477  df-ndx 16478  df-slot 16479  df-base 16481  df-sets 16482  df-ress 16483  df-plusg 16570  df-mulr 16571  df-sca 16573  df-vsca 16574  df-ip 16575  df-tset 16576  df-ple 16577  df-ds 16579  df-hom 16581  df-cco 16582  df-0g 16707  df-prds 16713  df-pws 16715  df-sra 19937  df-rgmod 19938  df-dsmm 20421  df-frlm 20436  df-psr 20594  df-mpl 20596  df-opsr 20598  df-psr1 20809  df-ply1 20811  df-coe1 20812  df-mat 21013
This theorem is referenced by:  decpmataa0  21373  decpmatmulsumfsupp  21378  pmatcollpw2lem  21382  pm2mpmhmlem1  21423
  Copyright terms: Public domain W3C validator