MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneu Structured version   Visualization version   GIF version

Theorem lspsneu 21084
Description: Nonzero vectors with equal singleton spans have a unique proportionality constant. (Contributed by NM, 31-May-2015.)
Hypotheses
Ref Expression
lspsneu.v 𝑉 = (Base‘𝑊)
lspsneu.s 𝑆 = (Scalar‘𝑊)
lspsneu.k 𝐾 = (Base‘𝑆)
lspsneu.o 𝑂 = (0g𝑆)
lspsneu.t · = ( ·𝑠𝑊)
lspsneu.z 0 = (0g𝑊)
lspsneu.n 𝑁 = (LSpan‘𝑊)
lspsneu.w (𝜑𝑊 ∈ LVec)
lspsneu.x (𝜑𝑋𝑉)
lspsneu.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lspsneu (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌)))
Distinct variable groups:   𝑘,𝐾   𝑘,𝑂   · ,𝑘   𝑘,𝑋   𝑘,𝑌
Allowed substitution hints:   𝜑(𝑘)   𝑆(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)   0 (𝑘)

Proof of Theorem lspsneu
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsneu.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 lspsneu.s . . . . . . 7 𝑆 = (Scalar‘𝑊)
3 lspsneu.k . . . . . . 7 𝐾 = (Base‘𝑆)
4 lspsneu.o . . . . . . 7 𝑂 = (0g𝑆)
5 lspsneu.t . . . . . . 7 · = ( ·𝑠𝑊)
6 lspsneu.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
7 lspsneu.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
8 lspsneu.x . . . . . . 7 (𝜑𝑋𝑉)
9 lspsneu.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3938 . . . . . . 7 (𝜑𝑌𝑉)
111, 2, 3, 4, 5, 6, 7, 8, 10lspsneq 21083 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
1211biimpd 229 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
13 eqtr2 2756 . . . . . . . . . 10 ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → (𝑗 · 𝑌) = (𝑖 · 𝑌))
14133ad2ant3 1135 . . . . . . . . 9 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → (𝑗 · 𝑌) = (𝑖 · 𝑌))
15 lspsneu.z . . . . . . . . . 10 0 = (0g𝑊)
16 simp1l 1198 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝜑)
1716, 7syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑊 ∈ LVec)
18 simp2l 1200 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗 ∈ (𝐾 ∖ {𝑂}))
1918eldifad 3938 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗𝐾)
20 simp2r 1201 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑖 ∈ (𝐾 ∖ {𝑂}))
2120eldifad 3938 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑖𝐾)
2216, 10syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑌𝑉)
23 eldifsni 4766 . . . . . . . . . . 11 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
2416, 9, 233syl 18 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑌0 )
251, 5, 2, 3, 15, 17, 19, 21, 22, 24lvecvscan2 21073 . . . . . . . . 9 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → ((𝑗 · 𝑌) = (𝑖 · 𝑌) ↔ 𝑗 = 𝑖))
2614, 25mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗 = 𝑖)
27263exp 1119 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ((𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) → ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
2827ex 412 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ((𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) → ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖))))
2928ralrimdvv 3188 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
3012, 29jcad 512 . . . 4 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ∧ ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖))))
31 oveq1 7412 . . . . . 6 (𝑗 = 𝑖 → (𝑗 · 𝑌) = (𝑖 · 𝑌))
3231eqeq2d 2746 . . . . 5 (𝑗 = 𝑖 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑖 · 𝑌)))
3332reu4 3714 . . . 4 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ↔ (∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ∧ ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
3430, 33imbitrrdi 252 . . 3 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
35 reurex 3363 . . . 4 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) → ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌))
3635, 11imbitrrid 246 . . 3 (𝜑 → (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
3734, 36impbid 212 . 2 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
38 oveq1 7412 . . . 4 (𝑗 = 𝑘 → (𝑗 · 𝑌) = (𝑘 · 𝑌))
3938eqeq2d 2746 . . 3 (𝑗 = 𝑘 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑘 · 𝑌)))
4039cbvreuvw 3383 . 2 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌))
4137, 40bitrdi 287 1 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wne 2932  wral 3051  wrex 3060  ∃!wreu 3357  cdif 3923  {csn 4601  cfv 6531  (class class class)co 7405  Basecbs 17228  Scalarcsca 17274   ·𝑠 cvsca 17275  0gc0g 17453  LSpanclspn 20928  LVecclvec 21060
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-tpos 8225  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-0g 17455  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-grp 18919  df-minusg 18920  df-sbg 18921  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-ring 20195  df-oppr 20297  df-dvdsr 20317  df-unit 20318  df-invr 20348  df-drng 20691  df-lmod 20819  df-lss 20889  df-lsp 20929  df-lvec 21061
This theorem is referenced by:  hdmap14lem3  41889
  Copyright terms: Public domain W3C validator