MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneu Structured version   Visualization version   GIF version

Theorem lspsneu 19897
Description: Nonzero vectors with equal singleton spans have a unique proportionality constant. (Contributed by NM, 31-May-2015.)
Hypotheses
Ref Expression
lspsneu.v 𝑉 = (Base‘𝑊)
lspsneu.s 𝑆 = (Scalar‘𝑊)
lspsneu.k 𝐾 = (Base‘𝑆)
lspsneu.o 𝑂 = (0g𝑆)
lspsneu.t · = ( ·𝑠𝑊)
lspsneu.z 0 = (0g𝑊)
lspsneu.n 𝑁 = (LSpan‘𝑊)
lspsneu.w (𝜑𝑊 ∈ LVec)
lspsneu.x (𝜑𝑋𝑉)
lspsneu.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lspsneu (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌)))
Distinct variable groups:   𝑘,𝐾   𝑘,𝑂   · ,𝑘   𝑘,𝑋   𝑘,𝑌
Allowed substitution hints:   𝜑(𝑘)   𝑆(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)   0 (𝑘)

Proof of Theorem lspsneu
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsneu.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 lspsneu.s . . . . . . 7 𝑆 = (Scalar‘𝑊)
3 lspsneu.k . . . . . . 7 𝐾 = (Base‘𝑆)
4 lspsneu.o . . . . . . 7 𝑂 = (0g𝑆)
5 lspsneu.t . . . . . . 7 · = ( ·𝑠𝑊)
6 lspsneu.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
7 lspsneu.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
8 lspsneu.x . . . . . . 7 (𝜑𝑋𝑉)
9 lspsneu.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3950 . . . . . . 7 (𝜑𝑌𝑉)
111, 2, 3, 4, 5, 6, 7, 8, 10lspsneq 19896 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
1211biimpd 231 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
13 eqtr2 2844 . . . . . . . . . 10 ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → (𝑗 · 𝑌) = (𝑖 · 𝑌))
14133ad2ant3 1131 . . . . . . . . 9 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → (𝑗 · 𝑌) = (𝑖 · 𝑌))
15 lspsneu.z . . . . . . . . . 10 0 = (0g𝑊)
16 simp1l 1193 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝜑)
1716, 7syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑊 ∈ LVec)
18 simp2l 1195 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗 ∈ (𝐾 ∖ {𝑂}))
1918eldifad 3950 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗𝐾)
20 simp2r 1196 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑖 ∈ (𝐾 ∖ {𝑂}))
2120eldifad 3950 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑖𝐾)
2216, 10syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑌𝑉)
23 eldifsni 4724 . . . . . . . . . . 11 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
2416, 9, 233syl 18 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑌0 )
251, 5, 2, 3, 15, 17, 19, 21, 22, 24lvecvscan2 19886 . . . . . . . . 9 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → ((𝑗 · 𝑌) = (𝑖 · 𝑌) ↔ 𝑗 = 𝑖))
2614, 25mpbid 234 . . . . . . . 8 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗 = 𝑖)
27263exp 1115 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ((𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) → ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
2827ex 415 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ((𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) → ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖))))
2928ralrimdvv 3195 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
3012, 29jcad 515 . . . 4 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ∧ ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖))))
31 oveq1 7165 . . . . . 6 (𝑗 = 𝑖 → (𝑗 · 𝑌) = (𝑖 · 𝑌))
3231eqeq2d 2834 . . . . 5 (𝑗 = 𝑖 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑖 · 𝑌)))
3332reu4 3724 . . . 4 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ↔ (∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ∧ ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
3430, 33syl6ibr 254 . . 3 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
35 reurex 3433 . . . 4 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) → ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌))
3635, 11syl5ibr 248 . . 3 (𝜑 → (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
3734, 36impbid 214 . 2 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
38 oveq1 7165 . . . 4 (𝑗 = 𝑘 → (𝑗 · 𝑌) = (𝑘 · 𝑌))
3938eqeq2d 2834 . . 3 (𝑗 = 𝑘 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑘 · 𝑌)))
4039cbvreuvw 3453 . 2 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌))
4137, 40syl6bb 289 1 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1537  wcel 2114  wne 3018  wral 3140  wrex 3141  ∃!wreu 3142  cdif 3935  {csn 4569  cfv 6357  (class class class)co 7158  Basecbs 16485  Scalarcsca 16570   ·𝑠 cvsca 16571  0gc0g 16715  LSpanclspn 19745  LVecclvec 19876
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-tpos 7894  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-3 11704  df-ndx 16488  df-slot 16489  df-base 16491  df-sets 16492  df-ress 16493  df-plusg 16580  df-mulr 16581  df-0g 16717  df-mgm 17854  df-sgrp 17903  df-mnd 17914  df-grp 18108  df-minusg 18109  df-sbg 18110  df-mgp 19242  df-ur 19254  df-ring 19301  df-oppr 19375  df-dvdsr 19393  df-unit 19394  df-invr 19424  df-drng 19506  df-lmod 19638  df-lss 19706  df-lsp 19746  df-lvec 19877
This theorem is referenced by:  hdmap14lem3  39008
  Copyright terms: Public domain W3C validator