MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneu Structured version   Visualization version   GIF version

Theorem lspsneu 20300
Description: Nonzero vectors with equal singleton spans have a unique proportionality constant. (Contributed by NM, 31-May-2015.)
Hypotheses
Ref Expression
lspsneu.v 𝑉 = (Base‘𝑊)
lspsneu.s 𝑆 = (Scalar‘𝑊)
lspsneu.k 𝐾 = (Base‘𝑆)
lspsneu.o 𝑂 = (0g𝑆)
lspsneu.t · = ( ·𝑠𝑊)
lspsneu.z 0 = (0g𝑊)
lspsneu.n 𝑁 = (LSpan‘𝑊)
lspsneu.w (𝜑𝑊 ∈ LVec)
lspsneu.x (𝜑𝑋𝑉)
lspsneu.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lspsneu (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌)))
Distinct variable groups:   𝑘,𝐾   𝑘,𝑂   · ,𝑘   𝑘,𝑋   𝑘,𝑌
Allowed substitution hints:   𝜑(𝑘)   𝑆(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)   0 (𝑘)

Proof of Theorem lspsneu
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsneu.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 lspsneu.s . . . . . . 7 𝑆 = (Scalar‘𝑊)
3 lspsneu.k . . . . . . 7 𝐾 = (Base‘𝑆)
4 lspsneu.o . . . . . . 7 𝑂 = (0g𝑆)
5 lspsneu.t . . . . . . 7 · = ( ·𝑠𝑊)
6 lspsneu.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
7 lspsneu.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
8 lspsneu.x . . . . . . 7 (𝜑𝑋𝑉)
9 lspsneu.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3895 . . . . . . 7 (𝜑𝑌𝑉)
111, 2, 3, 4, 5, 6, 7, 8, 10lspsneq 20299 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
1211biimpd 228 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
13 eqtr2 2762 . . . . . . . . . 10 ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → (𝑗 · 𝑌) = (𝑖 · 𝑌))
14133ad2ant3 1133 . . . . . . . . 9 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → (𝑗 · 𝑌) = (𝑖 · 𝑌))
15 lspsneu.z . . . . . . . . . 10 0 = (0g𝑊)
16 simp1l 1195 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝜑)
1716, 7syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑊 ∈ LVec)
18 simp2l 1197 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗 ∈ (𝐾 ∖ {𝑂}))
1918eldifad 3895 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗𝐾)
20 simp2r 1198 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑖 ∈ (𝐾 ∖ {𝑂}))
2120eldifad 3895 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑖𝐾)
2216, 10syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑌𝑉)
23 eldifsni 4720 . . . . . . . . . . 11 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
2416, 9, 233syl 18 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑌0 )
251, 5, 2, 3, 15, 17, 19, 21, 22, 24lvecvscan2 20289 . . . . . . . . 9 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → ((𝑗 · 𝑌) = (𝑖 · 𝑌) ↔ 𝑗 = 𝑖))
2614, 25mpbid 231 . . . . . . . 8 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗 = 𝑖)
27263exp 1117 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ((𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) → ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
2827ex 412 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ((𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) → ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖))))
2928ralrimdvv 3116 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
3012, 29jcad 512 . . . 4 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ∧ ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖))))
31 oveq1 7262 . . . . . 6 (𝑗 = 𝑖 → (𝑗 · 𝑌) = (𝑖 · 𝑌))
3231eqeq2d 2749 . . . . 5 (𝑗 = 𝑖 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑖 · 𝑌)))
3332reu4 3661 . . . 4 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ↔ (∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ∧ ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
3430, 33syl6ibr 251 . . 3 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
35 reurex 3352 . . . 4 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) → ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌))
3635, 11syl5ibr 245 . . 3 (𝜑 → (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
3734, 36impbid 211 . 2 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
38 oveq1 7262 . . . 4 (𝑗 = 𝑘 → (𝑗 · 𝑌) = (𝑘 · 𝑌))
3938eqeq2d 2749 . . 3 (𝑗 = 𝑘 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑘 · 𝑌)))
4039cbvreuvw 3375 . 2 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌))
4137, 40bitrdi 286 1 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wne 2942  wral 3063  wrex 3064  ∃!wreu 3065  cdif 3880  {csn 4558  cfv 6418  (class class class)co 7255  Basecbs 16840  Scalarcsca 16891   ·𝑠 cvsca 16892  0gc0g 17067  LSpanclspn 20148  LVecclvec 20279
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-tpos 8013  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-mgp 19636  df-ur 19653  df-ring 19700  df-oppr 19777  df-dvdsr 19798  df-unit 19799  df-invr 19829  df-drng 19908  df-lmod 20040  df-lss 20109  df-lsp 20149  df-lvec 20280
This theorem is referenced by:  hdmap14lem3  39811
  Copyright terms: Public domain W3C validator