MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lspsneu Structured version   Visualization version   GIF version

Theorem lspsneu 21143
Description: Nonzero vectors with equal singleton spans have a unique proportionality constant. (Contributed by NM, 31-May-2015.)
Hypotheses
Ref Expression
lspsneu.v 𝑉 = (Base‘𝑊)
lspsneu.s 𝑆 = (Scalar‘𝑊)
lspsneu.k 𝐾 = (Base‘𝑆)
lspsneu.o 𝑂 = (0g𝑆)
lspsneu.t · = ( ·𝑠𝑊)
lspsneu.z 0 = (0g𝑊)
lspsneu.n 𝑁 = (LSpan‘𝑊)
lspsneu.w (𝜑𝑊 ∈ LVec)
lspsneu.x (𝜑𝑋𝑉)
lspsneu.y (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
Assertion
Ref Expression
lspsneu (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌)))
Distinct variable groups:   𝑘,𝐾   𝑘,𝑂   · ,𝑘   𝑘,𝑋   𝑘,𝑌
Allowed substitution hints:   𝜑(𝑘)   𝑆(𝑘)   𝑁(𝑘)   𝑉(𝑘)   𝑊(𝑘)   0 (𝑘)

Proof of Theorem lspsneu
Dummy variables 𝑖 𝑗 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 lspsneu.v . . . . . . 7 𝑉 = (Base‘𝑊)
2 lspsneu.s . . . . . . 7 𝑆 = (Scalar‘𝑊)
3 lspsneu.k . . . . . . 7 𝐾 = (Base‘𝑆)
4 lspsneu.o . . . . . . 7 𝑂 = (0g𝑆)
5 lspsneu.t . . . . . . 7 · = ( ·𝑠𝑊)
6 lspsneu.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
7 lspsneu.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
8 lspsneu.x . . . . . . 7 (𝜑𝑋𝑉)
9 lspsneu.y . . . . . . . 8 (𝜑𝑌 ∈ (𝑉 ∖ { 0 }))
109eldifad 3975 . . . . . . 7 (𝜑𝑌𝑉)
111, 2, 3, 4, 5, 6, 7, 8, 10lspsneq 21142 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
1211biimpd 229 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
13 eqtr2 2759 . . . . . . . . . 10 ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → (𝑗 · 𝑌) = (𝑖 · 𝑌))
14133ad2ant3 1134 . . . . . . . . 9 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → (𝑗 · 𝑌) = (𝑖 · 𝑌))
15 lspsneu.z . . . . . . . . . 10 0 = (0g𝑊)
16 simp1l 1196 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝜑)
1716, 7syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑊 ∈ LVec)
18 simp2l 1198 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗 ∈ (𝐾 ∖ {𝑂}))
1918eldifad 3975 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗𝐾)
20 simp2r 1199 . . . . . . . . . . 11 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑖 ∈ (𝐾 ∖ {𝑂}))
2120eldifad 3975 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑖𝐾)
2216, 10syl 17 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑌𝑉)
23 eldifsni 4795 . . . . . . . . . . 11 (𝑌 ∈ (𝑉 ∖ { 0 }) → 𝑌0 )
2416, 9, 233syl 18 . . . . . . . . . 10 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑌0 )
251, 5, 2, 3, 15, 17, 19, 21, 22, 24lvecvscan2 21132 . . . . . . . . 9 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → ((𝑗 · 𝑌) = (𝑖 · 𝑌) ↔ 𝑗 = 𝑖))
2614, 25mpbid 232 . . . . . . . 8 (((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) ∧ (𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) ∧ (𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌))) → 𝑗 = 𝑖)
27263exp 1118 . . . . . . 7 ((𝜑 ∧ (𝑁‘{𝑋}) = (𝑁‘{𝑌})) → ((𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) → ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
2827ex 412 . . . . . 6 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ((𝑗 ∈ (𝐾 ∖ {𝑂}) ∧ 𝑖 ∈ (𝐾 ∖ {𝑂})) → ((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖))))
2928ralrimdvv 3201 . . . . 5 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
3012, 29jcad 512 . . . 4 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → (∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ∧ ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖))))
31 oveq1 7438 . . . . . 6 (𝑗 = 𝑖 → (𝑗 · 𝑌) = (𝑖 · 𝑌))
3231eqeq2d 2746 . . . . 5 (𝑗 = 𝑖 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑖 · 𝑌)))
3332reu4 3740 . . . 4 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ↔ (∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ∧ ∀𝑗 ∈ (𝐾 ∖ {𝑂})∀𝑖 ∈ (𝐾 ∖ {𝑂})((𝑋 = (𝑗 · 𝑌) ∧ 𝑋 = (𝑖 · 𝑌)) → 𝑗 = 𝑖)))
3430, 33imbitrrdi 252 . . 3 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) → ∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
35 reurex 3382 . . . 4 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) → ∃𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌))
3635, 11imbitrrid 246 . . 3 (𝜑 → (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) → (𝑁‘{𝑋}) = (𝑁‘{𝑌})))
3734, 36impbid 212 . 2 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌)))
38 oveq1 7438 . . . 4 (𝑗 = 𝑘 → (𝑗 · 𝑌) = (𝑘 · 𝑌))
3938eqeq2d 2746 . . 3 (𝑗 = 𝑘 → (𝑋 = (𝑗 · 𝑌) ↔ 𝑋 = (𝑘 · 𝑌)))
4039cbvreuvw 3402 . 2 (∃!𝑗 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑗 · 𝑌) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌))
4137, 40bitrdi 287 1 (𝜑 → ((𝑁‘{𝑋}) = (𝑁‘{𝑌}) ↔ ∃!𝑘 ∈ (𝐾 ∖ {𝑂})𝑋 = (𝑘 · 𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wrex 3068  ∃!wreu 3376  cdif 3960  {csn 4631  cfv 6563  (class class class)co 7431  Basecbs 17245  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  LSpanclspn 20987  LVecclvec 21119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-0g 17488  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-grp 18967  df-minusg 18968  df-sbg 18969  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-oppr 20351  df-dvdsr 20374  df-unit 20375  df-invr 20405  df-drng 20748  df-lmod 20877  df-lss 20948  df-lsp 20988  df-lvec 21120
This theorem is referenced by:  hdmap14lem3  41853
  Copyright terms: Public domain W3C validator