Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftf1 Structured version   Visualization version   GIF version

Theorem fargshiftf1 41905
Description: If a function is 1-1, then also the shifted function is 1-1. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftf1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸
Allowed substitution hints:   𝐺(𝑥)   𝑁(𝑥)

Proof of Theorem fargshiftf1
Dummy variables 𝑘 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6241 . . 3 (𝐹:(1...𝑁)–1-1→dom 𝐸𝐹:(1...𝑁)⟶dom 𝐸)
2 fargshift.g . . . 4 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
32fargshiftf 41904 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
41, 3sylan2 580 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
5 ffn 6185 . . . . 5 (𝐹:(1...𝑁)⟶dom 𝐸𝐹 Fn (1...𝑁))
6 fseq1hash 13367 . . . . 5 ((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
75, 6sylan2 580 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁)
81, 7sylan2 580 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → (♯‘𝐹) = 𝑁)
9 eleq1 2838 . . . . 5 ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0𝑁 ∈ ℕ0))
10 oveq2 6801 . . . . . 6 ((♯‘𝐹) = 𝑁 → (1...(♯‘𝐹)) = (1...𝑁))
11 f1eq2 6237 . . . . . 6 ((1...(♯‘𝐹)) = (1...𝑁) → (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸𝐹:(1...𝑁)–1-1→dom 𝐸))
1210, 11syl 17 . . . . 5 ((♯‘𝐹) = 𝑁 → (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸𝐹:(1...𝑁)–1-1→dom 𝐸))
139, 12anbi12d 616 . . . 4 ((♯‘𝐹) = 𝑁 → (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸) ↔ (𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸)))
14 dff13 6655 . . . . . 6 (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 ↔ (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)))
15 fz0add1fz1 12746 . . . . . . . . . . 11 (((♯‘𝐹) ∈ ℕ0𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦 + 1) ∈ (1...(♯‘𝐹)))
16 fz0add1fz1 12746 . . . . . . . . . . 11 (((♯‘𝐹) ∈ ℕ0𝑧 ∈ (0..^(♯‘𝐹))) → (𝑧 + 1) ∈ (1...(♯‘𝐹)))
1715, 16anim12dan 605 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))))
18 fveq2 6332 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑦 + 1) → (𝐹𝑘) = (𝐹‘(𝑦 + 1)))
1918eqeq1d 2773 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑦 + 1) → ((𝐹𝑘) = (𝐹𝑙) ↔ (𝐹‘(𝑦 + 1)) = (𝐹𝑙)))
20 eqeq1 2775 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑦 + 1) → (𝑘 = 𝑙 ↔ (𝑦 + 1) = 𝑙))
2119, 20imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑦 + 1) → (((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹𝑙) → (𝑦 + 1) = 𝑙)))
22 fveq2 6332 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑧 + 1) → (𝐹𝑙) = (𝐹‘(𝑧 + 1)))
2322eqeq2d 2781 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑧 + 1) → ((𝐹‘(𝑦 + 1)) = (𝐹𝑙) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
24 eqeq2 2782 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑧 + 1) → ((𝑦 + 1) = 𝑙 ↔ (𝑦 + 1) = (𝑧 + 1)))
2523, 24imbi12d 333 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝑧 + 1) → (((𝐹‘(𝑦 + 1)) = (𝐹𝑙) → (𝑦 + 1) = 𝑙) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
2621, 25rspc2v 3472 . . . . . . . . . . . . . . . 16 (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
2726adantl 467 . . . . . . . . . . . . . . 15 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
282fargshiftfv 41903 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑦 ∈ (0..^(♯‘𝐹)) → (𝐺𝑦) = (𝐹‘(𝑦 + 1))))
2928expcom 398 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑦 ∈ (0..^(♯‘𝐹)) → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3029com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^(♯‘𝐹)) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3130adantr 466 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3231impcom 394 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1))))
3332impcom 394 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))
342fargshiftfv 41903 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑧 ∈ (0..^(♯‘𝐹)) → (𝐺𝑧) = (𝐹‘(𝑧 + 1))))
3534expcom 398 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑧 ∈ (0..^(♯‘𝐹)) → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3635com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (0..^(♯‘𝐹)) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3736adantl 467 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3837impcom 394 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1))))
3938impcom 394 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))
4033, 39eqeq12d 2786 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
4140adantr 466 . . . . . . . . . . . . . . . . . 18 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
4241adantr 466 . . . . . . . . . . . . . . . . 17 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
43 elfzoelz 12678 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℤ)
4443zcnd 11685 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℂ)
4544adantr 466 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℂ)
4645adantl 467 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 𝑦 ∈ ℂ)
47 elfzoelz 12678 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (0..^(♯‘𝐹)) → 𝑧 ∈ ℤ)
4847zcnd 11685 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ (0..^(♯‘𝐹)) → 𝑧 ∈ ℂ)
4948adantl 467 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → 𝑧 ∈ ℂ)
5049adantl 467 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 𝑧 ∈ ℂ)
51 1cnd 10258 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 1 ∈ ℂ)
5246, 50, 513jca 1122 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
5352adantl 467 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
5453adantr 466 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
55 addcan2 10423 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) = (𝑧 + 1) ↔ 𝑦 = 𝑧))
5654, 55syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → ((𝑦 + 1) = (𝑧 + 1) ↔ 𝑦 = 𝑧))
5756imbi2d 329 . . . . . . . . . . . . . . . . . 18 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → 𝑦 = 𝑧)))
5857biimpa 462 . . . . . . . . . . . . . . . . 17 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → 𝑦 = 𝑧))
5942, 58sylbid 230 . . . . . . . . . . . . . . . 16 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
6059ex 397 . . . . . . . . . . . . . . 15 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6127, 60syld 47 . . . . . . . . . . . . . 14 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6261exp31 406 . . . . . . . . . . . . 13 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))))
6362com24 95 . . . . . . . . . . . 12 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))))
6463imp 393 . . . . . . . . . . 11 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6564com13 88 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6617, 65mpd 15 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6766expcom 398 . . . . . . . 8 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6867com13 88 . . . . . . 7 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((♯‘𝐹) ∈ ℕ0 → ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6968ralrimdvv 3122 . . . . . 6 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((♯‘𝐹) ∈ ℕ0 → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
7014, 69sylbi 207 . . . . 5 (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
7170impcom 394 . . . 4 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
7213, 71syl6bir 244 . . 3 ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
738, 72mpcom 38 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
74 dff13 6655 . 2 (𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸 ↔ (𝐺:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
754, 73, 74sylanbrc 572 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  w3a 1071   = wceq 1631  wcel 2145  wral 3061  cmpt 4863  dom cdm 5249   Fn wfn 6026  wf 6027  1-1wf1 6028  cfv 6031  (class class class)co 6793  cc 10136  0cc0 10138  1c1 10139   + caddc 10141  0cn0 11494  ...cfz 12533  ..^cfzo 12673  chash 13321
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-n0 11495  df-z 11580  df-uz 11889  df-fz 12534  df-fzo 12674  df-hash 13322
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator