Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftf1 Structured version   Visualization version   GIF version

Theorem fargshiftf1 43003
Description: If a function is 1-1, then also the shifted function is 1-1. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftf1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸
Allowed substitution hints:   𝐺(𝑥)   𝑁(𝑥)

Proof of Theorem fargshiftf1
Dummy variables 𝑘 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6402 . . 3 (𝐹:(1...𝑁)–1-1→dom 𝐸𝐹:(1...𝑁)⟶dom 𝐸)
2 fargshift.g . . . 4 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
32fargshiftf 43002 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
41, 3sylan2 584 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
5 ffn 6342 . . . . 5 (𝐹:(1...𝑁)⟶dom 𝐸𝐹 Fn (1...𝑁))
6 fseq1hash 13549 . . . . 5 ((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
75, 6sylan2 584 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁)
81, 7sylan2 584 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → (♯‘𝐹) = 𝑁)
9 eleq1 2848 . . . . 5 ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0𝑁 ∈ ℕ0))
10 oveq2 6983 . . . . . 6 ((♯‘𝐹) = 𝑁 → (1...(♯‘𝐹)) = (1...𝑁))
11 f1eq2 6398 . . . . . 6 ((1...(♯‘𝐹)) = (1...𝑁) → (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸𝐹:(1...𝑁)–1-1→dom 𝐸))
1210, 11syl 17 . . . . 5 ((♯‘𝐹) = 𝑁 → (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸𝐹:(1...𝑁)–1-1→dom 𝐸))
139, 12anbi12d 622 . . . 4 ((♯‘𝐹) = 𝑁 → (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸) ↔ (𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸)))
14 dff13 6837 . . . . . 6 (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 ↔ (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)))
15 fz0add1fz1 12921 . . . . . . . . . . 11 (((♯‘𝐹) ∈ ℕ0𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦 + 1) ∈ (1...(♯‘𝐹)))
16 fz0add1fz1 12921 . . . . . . . . . . 11 (((♯‘𝐹) ∈ ℕ0𝑧 ∈ (0..^(♯‘𝐹))) → (𝑧 + 1) ∈ (1...(♯‘𝐹)))
1715, 16anim12dan 610 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))))
18 fveq2 6497 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑦 + 1) → (𝐹𝑘) = (𝐹‘(𝑦 + 1)))
1918eqeq1d 2775 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑦 + 1) → ((𝐹𝑘) = (𝐹𝑙) ↔ (𝐹‘(𝑦 + 1)) = (𝐹𝑙)))
20 eqeq1 2777 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑦 + 1) → (𝑘 = 𝑙 ↔ (𝑦 + 1) = 𝑙))
2119, 20imbi12d 337 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑦 + 1) → (((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹𝑙) → (𝑦 + 1) = 𝑙)))
22 fveq2 6497 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑧 + 1) → (𝐹𝑙) = (𝐹‘(𝑧 + 1)))
2322eqeq2d 2783 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑧 + 1) → ((𝐹‘(𝑦 + 1)) = (𝐹𝑙) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
24 eqeq2 2784 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑧 + 1) → ((𝑦 + 1) = 𝑙 ↔ (𝑦 + 1) = (𝑧 + 1)))
2523, 24imbi12d 337 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝑧 + 1) → (((𝐹‘(𝑦 + 1)) = (𝐹𝑙) → (𝑦 + 1) = 𝑙) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
2621, 25rspc2v 3543 . . . . . . . . . . . . . . . 16 (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
2726adantl 474 . . . . . . . . . . . . . . 15 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
282fargshiftfv 43001 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑦 ∈ (0..^(♯‘𝐹)) → (𝐺𝑦) = (𝐹‘(𝑦 + 1))))
2928expcom 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑦 ∈ (0..^(♯‘𝐹)) → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3029com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^(♯‘𝐹)) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3130adantr 473 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3231impcom 399 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1))))
3332impcom 399 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))
342fargshiftfv 43001 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑧 ∈ (0..^(♯‘𝐹)) → (𝐺𝑧) = (𝐹‘(𝑧 + 1))))
3534expcom 406 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑧 ∈ (0..^(♯‘𝐹)) → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3635com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (0..^(♯‘𝐹)) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3736adantl 474 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3837impcom 399 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1))))
3938impcom 399 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))
4033, 39eqeq12d 2788 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
4140adantr 473 . . . . . . . . . . . . . . . . . 18 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
4241adantr 473 . . . . . . . . . . . . . . . . 17 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
43 elfzoelz 12853 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℤ)
4443zcnd 11900 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℂ)
4544adantr 473 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℂ)
4645adantl 474 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 𝑦 ∈ ℂ)
47 elfzoelz 12853 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (0..^(♯‘𝐹)) → 𝑧 ∈ ℤ)
4847zcnd 11900 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ (0..^(♯‘𝐹)) → 𝑧 ∈ ℂ)
4948adantl 474 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → 𝑧 ∈ ℂ)
5049adantl 474 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 𝑧 ∈ ℂ)
51 1cnd 10433 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 1 ∈ ℂ)
5246, 50, 513jca 1109 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
5352adantl 474 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
5453adantr 473 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
55 addcan2 10624 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) = (𝑧 + 1) ↔ 𝑦 = 𝑧))
5654, 55syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → ((𝑦 + 1) = (𝑧 + 1) ↔ 𝑦 = 𝑧))
5756imbi2d 333 . . . . . . . . . . . . . . . . . 18 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → 𝑦 = 𝑧)))
5857biimpa 469 . . . . . . . . . . . . . . . . 17 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → 𝑦 = 𝑧))
5942, 58sylbid 232 . . . . . . . . . . . . . . . 16 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
6059ex 405 . . . . . . . . . . . . . . 15 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6127, 60syld 47 . . . . . . . . . . . . . 14 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6261exp31 412 . . . . . . . . . . . . 13 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))))
6362com24 95 . . . . . . . . . . . 12 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))))
6463imp 398 . . . . . . . . . . 11 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6564com13 88 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6617, 65mpd 15 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6766expcom 406 . . . . . . . 8 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6867com13 88 . . . . . . 7 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((♯‘𝐹) ∈ ℕ0 → ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6968ralrimdvv 3138 . . . . . 6 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((♯‘𝐹) ∈ ℕ0 → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
7014, 69sylbi 209 . . . . 5 (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
7170impcom 399 . . . 4 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
7213, 71syl6bir 246 . . 3 ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
738, 72mpcom 38 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
74 dff13 6837 . 2 (𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸 ↔ (𝐺:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
754, 73, 74sylanbrc 575 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387  w3a 1069   = wceq 1508  wcel 2051  wral 3083  cmpt 5005  dom cdm 5404   Fn wfn 6181  wf 6182  1-1wf1 6183  cfv 6186  (class class class)co 6975  cc 10332  0cc0 10334  1c1 10335   + caddc 10337  0cn0 11706  ...cfz 12707  ..^cfzo 12848  chash 13504
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-er 8088  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-card 9161  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-n0 11707  df-z 11793  df-uz 12058  df-fz 12708  df-fzo 12849  df-hash 13505
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator