Step | Hyp | Ref
| Expression |
1 | | f1f 6654 |
. . 3
⊢ (𝐹:(1...𝑁)–1-1→dom 𝐸 → 𝐹:(1...𝑁)⟶dom 𝐸) |
2 | | fargshift.g |
. . . 4
⊢ 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1))) |
3 | 2 | fargshiftf 44780 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
4 | 1, 3 | sylan2 592 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸) |
5 | | ffn 6584 |
. . . . 5
⊢ (𝐹:(1...𝑁)⟶dom 𝐸 → 𝐹 Fn (1...𝑁)) |
6 | | fseq1hash 14019 |
. . . . 5
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁) |
7 | 5, 6 | sylan2 592 |
. . . 4
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁) |
8 | 1, 7 | sylan2 592 |
. . 3
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–1-1→dom 𝐸) → (♯‘𝐹) = 𝑁) |
9 | | eleq1 2826 |
. . . . 5
⊢
((♯‘𝐹) =
𝑁 →
((♯‘𝐹) ∈
ℕ0 ↔ 𝑁 ∈
ℕ0)) |
10 | | oveq2 7263 |
. . . . . 6
⊢
((♯‘𝐹) =
𝑁 →
(1...(♯‘𝐹)) =
(1...𝑁)) |
11 | | f1eq2 6650 |
. . . . . 6
⊢
((1...(♯‘𝐹)) = (1...𝑁) → (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 ↔ 𝐹:(1...𝑁)–1-1→dom 𝐸)) |
12 | 10, 11 | syl 17 |
. . . . 5
⊢
((♯‘𝐹) =
𝑁 → (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 ↔ 𝐹:(1...𝑁)–1-1→dom 𝐸)) |
13 | 9, 12 | anbi12d 630 |
. . . 4
⊢
((♯‘𝐹) =
𝑁 →
(((♯‘𝐹) ∈
ℕ0 ∧ 𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸) ↔ (𝑁 ∈ ℕ0 ∧ 𝐹:(1...𝑁)–1-1→dom 𝐸))) |
14 | | dff13 7109 |
. . . . . 6
⊢ (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 ↔ (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙))) |
15 | | fz0add1fz1 13385 |
. . . . . . . . . . 11
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦 + 1) ∈ (1...(♯‘𝐹))) |
16 | | fz0add1fz1 13385 |
. . . . . . . . . . 11
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → (𝑧 + 1) ∈ (1...(♯‘𝐹))) |
17 | 15, 16 | anim12dan 618 |
. . . . . . . . . 10
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) |
18 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = (𝑦 + 1) → (𝐹‘𝑘) = (𝐹‘(𝑦 + 1))) |
19 | 18 | eqeq1d 2740 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑦 + 1) → ((𝐹‘𝑘) = (𝐹‘𝑙) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘𝑙))) |
20 | | eqeq1 2742 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = (𝑦 + 1) → (𝑘 = 𝑙 ↔ (𝑦 + 1) = 𝑙)) |
21 | 19, 20 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = (𝑦 + 1) → (((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹‘𝑙) → (𝑦 + 1) = 𝑙))) |
22 | | fveq2 6756 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑙 = (𝑧 + 1) → (𝐹‘𝑙) = (𝐹‘(𝑧 + 1))) |
23 | 22 | eqeq2d 2749 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = (𝑧 + 1) → ((𝐹‘(𝑦 + 1)) = (𝐹‘𝑙) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)))) |
24 | | eqeq2 2750 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑙 = (𝑧 + 1) → ((𝑦 + 1) = 𝑙 ↔ (𝑦 + 1) = (𝑧 + 1))) |
25 | 23, 24 | imbi12d 344 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑙 = (𝑧 + 1) → (((𝐹‘(𝑦 + 1)) = (𝐹‘𝑙) → (𝑦 + 1) = 𝑙) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)))) |
26 | 21, 25 | rspc2v 3562 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹)))
→ (∀𝑘 ∈
(1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)))) |
27 | 26 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
∧ ((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹))))
→ (∀𝑘 ∈
(1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)))) |
28 | 2 | fargshiftfv 44779 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑦 ∈ (0..^(♯‘𝐹)) → (𝐺‘𝑦) = (𝐹‘(𝑦 + 1)))) |
29 | 28 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑦 ∈
(0..^(♯‘𝐹))
→ (𝐺‘𝑦) = (𝐹‘(𝑦 + 1))))) |
30 | 29 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ ((♯‘𝐹)
∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺‘𝑦) = (𝐹‘(𝑦 + 1))))) |
31 | 30 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))
→ ((♯‘𝐹)
∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺‘𝑦) = (𝐹‘(𝑦 + 1))))) |
32 | 31 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺‘𝑦) = (𝐹‘(𝑦 + 1)))) |
33 | 32 | impcom 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
→ (𝐺‘𝑦) = (𝐹‘(𝑦 + 1))) |
34 | 2 | fargshiftfv 44779 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑧 ∈ (0..^(♯‘𝐹)) → (𝐺‘𝑧) = (𝐹‘(𝑧 + 1)))) |
35 | 34 | expcom 413 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑧 ∈
(0..^(♯‘𝐹))
→ (𝐺‘𝑧) = (𝐹‘(𝑧 + 1))))) |
36 | 35 | com13 88 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑧 ∈
(0..^(♯‘𝐹))
→ ((♯‘𝐹)
∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺‘𝑧) = (𝐹‘(𝑧 + 1))))) |
37 | 36 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))
→ ((♯‘𝐹)
∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺‘𝑧) = (𝐹‘(𝑧 + 1))))) |
38 | 37 | impcom 407 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺‘𝑧) = (𝐹‘(𝑧 + 1)))) |
39 | 38 | impcom 407 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
→ (𝐺‘𝑧) = (𝐹‘(𝑧 + 1))) |
40 | 33, 39 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
→ ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)))) |
41 | 40 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
∧ ((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹))))
→ ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)))) |
42 | 41 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
∧ ((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹))))
∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐺‘𝑦) = (𝐺‘𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)))) |
43 | | elfzoelz 13316 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ 𝑦 ∈
ℤ) |
44 | 43 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑦 ∈
(0..^(♯‘𝐹))
→ 𝑦 ∈
ℂ) |
45 | 44 | adantr 480 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))
→ 𝑦 ∈
ℂ) |
46 | 45 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 𝑦 ∈ ℂ) |
47 | | elfzoelz 13316 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ (𝑧 ∈
(0..^(♯‘𝐹))
→ 𝑧 ∈
ℤ) |
48 | 47 | zcnd 12356 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (𝑧 ∈
(0..^(♯‘𝐹))
→ 𝑧 ∈
ℂ) |
49 | 48 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ ((𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))
→ 𝑧 ∈
ℂ) |
50 | 49 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 𝑧 ∈ ℂ) |
51 | | 1cnd 10901 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 1 ∈
ℂ) |
52 | 46, 50, 51 | 3jca 1126 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈
ℂ)) |
53 | 52 | adantl 481 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
→ (𝑦 ∈ ℂ
∧ 𝑧 ∈ ℂ
∧ 1 ∈ ℂ)) |
54 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
∧ ((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹))))
→ (𝑦 ∈ ℂ
∧ 𝑧 ∈ ℂ
∧ 1 ∈ ℂ)) |
55 | | addcan2 11090 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈
ℂ) → ((𝑦 + 1) =
(𝑧 + 1) ↔ 𝑦 = 𝑧)) |
56 | 54, 55 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
∧ ((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹))))
→ ((𝑦 + 1) = (𝑧 + 1) ↔ 𝑦 = 𝑧)) |
57 | 56 | imbi2d 340 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
∧ ((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹))))
→ (((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → 𝑦 = 𝑧))) |
58 | 57 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢ ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
∧ ((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹))))
∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → 𝑦 = 𝑧)) |
59 | 42, 58 | sylbid 239 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
∧ ((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹))))
∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
60 | 59 | ex 412 |
. . . . . . . . . . . . . . 15
⊢ (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
∧ ((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹))))
→ (((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) |
61 | 27, 60 | syld 47 |
. . . . . . . . . . . . . 14
⊢ (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))))
∧ ((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹))))
→ (∀𝑘 ∈
(1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) |
62 | 61 | exp31 419 |
. . . . . . . . . . . . 13
⊢ (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹))))
→ (((𝑦 + 1) ∈
(1...(♯‘𝐹))
∧ (𝑧 + 1) ∈
(1...(♯‘𝐹)))
→ (∀𝑘 ∈
(1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))))) |
63 | 62 | com24 95 |
. . . . . . . . . . . 12
⊢ (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) →
(((♯‘𝐹) ∈
ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))))) |
64 | 63 | imp 406 |
. . . . . . . . . . 11
⊢ ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙)) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) →
(((♯‘𝐹) ∈
ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)))) |
65 | 64 | com13 88 |
. . . . . . . . . 10
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙)) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)))) |
66 | 17, 65 | mpd 15 |
. . . . . . . . 9
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙)) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) |
67 | 66 | expcom 413 |
. . . . . . . 8
⊢ ((𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))
→ ((♯‘𝐹)
∈ ℕ0 → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙)) → ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)))) |
68 | 67 | com13 88 |
. . . . . . 7
⊢ ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙)) → ((♯‘𝐹) ∈ ℕ0 → ((𝑦 ∈
(0..^(♯‘𝐹))
∧ 𝑧 ∈
(0..^(♯‘𝐹)))
→ ((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)))) |
69 | 68 | ralrimdvv 3116 |
. . . . . 6
⊢ ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹‘𝑘) = (𝐹‘𝑙) → 𝑘 = 𝑙)) → ((♯‘𝐹) ∈ ℕ0 →
∀𝑦 ∈
(0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) |
70 | 14, 69 | sylbi 216 |
. . . . 5
⊢ (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 →
∀𝑦 ∈
(0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) |
71 | 70 | impcom 407 |
. . . 4
⊢
(((♯‘𝐹)
∈ ℕ0 ∧ 𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
72 | 13, 71 | syl6bir 253 |
. . 3
⊢
((♯‘𝐹) =
𝑁 → ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) |
73 | 8, 72 | mpcom 38 |
. 2
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧)) |
74 | | dff13 7109 |
. 2
⊢ (𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸 ↔ (𝐺:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺‘𝑦) = (𝐺‘𝑧) → 𝑦 = 𝑧))) |
75 | 4, 73, 74 | sylanbrc 582 |
1
⊢ ((𝑁 ∈ ℕ0
∧ 𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸) |