Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftf1 Structured version   Visualization version   GIF version

Theorem fargshiftf1 44781
Description: If a function is 1-1, then also the shifted function is 1-1. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftf1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸
Allowed substitution hints:   𝐺(𝑥)   𝑁(𝑥)

Proof of Theorem fargshiftf1
Dummy variables 𝑘 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6654 . . 3 (𝐹:(1...𝑁)–1-1→dom 𝐸𝐹:(1...𝑁)⟶dom 𝐸)
2 fargshift.g . . . 4 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
32fargshiftf 44780 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
41, 3sylan2 592 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
5 ffn 6584 . . . . 5 (𝐹:(1...𝑁)⟶dom 𝐸𝐹 Fn (1...𝑁))
6 fseq1hash 14019 . . . . 5 ((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
75, 6sylan2 592 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁)
81, 7sylan2 592 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → (♯‘𝐹) = 𝑁)
9 eleq1 2826 . . . . 5 ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0𝑁 ∈ ℕ0))
10 oveq2 7263 . . . . . 6 ((♯‘𝐹) = 𝑁 → (1...(♯‘𝐹)) = (1...𝑁))
11 f1eq2 6650 . . . . . 6 ((1...(♯‘𝐹)) = (1...𝑁) → (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸𝐹:(1...𝑁)–1-1→dom 𝐸))
1210, 11syl 17 . . . . 5 ((♯‘𝐹) = 𝑁 → (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸𝐹:(1...𝑁)–1-1→dom 𝐸))
139, 12anbi12d 630 . . . 4 ((♯‘𝐹) = 𝑁 → (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸) ↔ (𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸)))
14 dff13 7109 . . . . . 6 (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 ↔ (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)))
15 fz0add1fz1 13385 . . . . . . . . . . 11 (((♯‘𝐹) ∈ ℕ0𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦 + 1) ∈ (1...(♯‘𝐹)))
16 fz0add1fz1 13385 . . . . . . . . . . 11 (((♯‘𝐹) ∈ ℕ0𝑧 ∈ (0..^(♯‘𝐹))) → (𝑧 + 1) ∈ (1...(♯‘𝐹)))
1715, 16anim12dan 618 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))))
18 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑦 + 1) → (𝐹𝑘) = (𝐹‘(𝑦 + 1)))
1918eqeq1d 2740 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑦 + 1) → ((𝐹𝑘) = (𝐹𝑙) ↔ (𝐹‘(𝑦 + 1)) = (𝐹𝑙)))
20 eqeq1 2742 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑦 + 1) → (𝑘 = 𝑙 ↔ (𝑦 + 1) = 𝑙))
2119, 20imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑦 + 1) → (((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹𝑙) → (𝑦 + 1) = 𝑙)))
22 fveq2 6756 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑧 + 1) → (𝐹𝑙) = (𝐹‘(𝑧 + 1)))
2322eqeq2d 2749 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑧 + 1) → ((𝐹‘(𝑦 + 1)) = (𝐹𝑙) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
24 eqeq2 2750 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑧 + 1) → ((𝑦 + 1) = 𝑙 ↔ (𝑦 + 1) = (𝑧 + 1)))
2523, 24imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝑧 + 1) → (((𝐹‘(𝑦 + 1)) = (𝐹𝑙) → (𝑦 + 1) = 𝑙) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
2621, 25rspc2v 3562 . . . . . . . . . . . . . . . 16 (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
2726adantl 481 . . . . . . . . . . . . . . 15 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
282fargshiftfv 44779 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑦 ∈ (0..^(♯‘𝐹)) → (𝐺𝑦) = (𝐹‘(𝑦 + 1))))
2928expcom 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑦 ∈ (0..^(♯‘𝐹)) → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3029com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^(♯‘𝐹)) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3130adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3231impcom 407 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1))))
3332impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))
342fargshiftfv 44779 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑧 ∈ (0..^(♯‘𝐹)) → (𝐺𝑧) = (𝐹‘(𝑧 + 1))))
3534expcom 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑧 ∈ (0..^(♯‘𝐹)) → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3635com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (0..^(♯‘𝐹)) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3736adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3837impcom 407 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1))))
3938impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))
4033, 39eqeq12d 2754 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
4140adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
4241adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
43 elfzoelz 13316 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℤ)
4443zcnd 12356 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℂ)
4544adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℂ)
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 𝑦 ∈ ℂ)
47 elfzoelz 13316 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (0..^(♯‘𝐹)) → 𝑧 ∈ ℤ)
4847zcnd 12356 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ (0..^(♯‘𝐹)) → 𝑧 ∈ ℂ)
4948adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → 𝑧 ∈ ℂ)
5049adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 𝑧 ∈ ℂ)
51 1cnd 10901 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 1 ∈ ℂ)
5246, 50, 513jca 1126 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
5352adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
5453adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
55 addcan2 11090 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) = (𝑧 + 1) ↔ 𝑦 = 𝑧))
5654, 55syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → ((𝑦 + 1) = (𝑧 + 1) ↔ 𝑦 = 𝑧))
5756imbi2d 340 . . . . . . . . . . . . . . . . . 18 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → 𝑦 = 𝑧)))
5857biimpa 476 . . . . . . . . . . . . . . . . 17 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → 𝑦 = 𝑧))
5942, 58sylbid 239 . . . . . . . . . . . . . . . 16 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
6059ex 412 . . . . . . . . . . . . . . 15 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6127, 60syld 47 . . . . . . . . . . . . . 14 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6261exp31 419 . . . . . . . . . . . . 13 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))))
6362com24 95 . . . . . . . . . . . 12 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))))
6463imp 406 . . . . . . . . . . 11 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6564com13 88 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6617, 65mpd 15 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6766expcom 413 . . . . . . . 8 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6867com13 88 . . . . . . 7 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((♯‘𝐹) ∈ ℕ0 → ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6968ralrimdvv 3116 . . . . . 6 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((♯‘𝐹) ∈ ℕ0 → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
7014, 69sylbi 216 . . . . 5 (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
7170impcom 407 . . . 4 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
7213, 71syl6bir 253 . . 3 ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
738, 72mpcom 38 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
74 dff13 7109 . 2 (𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸 ↔ (𝐺:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
754, 73, 74sylanbrc 582 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  cmpt 5153  dom cdm 5580   Fn wfn 6413  wf 6414  1-1wf1 6415  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802  1c1 10803   + caddc 10805  0cn0 12163  ...cfz 13168  ..^cfzo 13311  chash 13972
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-fzo 13312  df-hash 13973
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator