Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fargshiftf1 Structured version   Visualization version   GIF version

Theorem fargshiftf1 47546
Description: If a function is 1-1, then also the shifted function is 1-1. (Contributed by Alexander van der Vekens, 23-Nov-2017.)
Hypothesis
Ref Expression
fargshift.g 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
Assertion
Ref Expression
fargshiftf1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸)
Distinct variable groups:   𝑥,𝐹   𝑥,𝐸
Allowed substitution hints:   𝐺(𝑥)   𝑁(𝑥)

Proof of Theorem fargshiftf1
Dummy variables 𝑘 𝑙 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 f1f 6725 . . 3 (𝐹:(1...𝑁)–1-1→dom 𝐸𝐹:(1...𝑁)⟶dom 𝐸)
2 fargshift.g . . . 4 𝐺 = (𝑥 ∈ (0..^(♯‘𝐹)) ↦ (𝐹‘(𝑥 + 1)))
32fargshiftf 47545 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
41, 3sylan2 593 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))⟶dom 𝐸)
5 ffn 6657 . . . . 5 (𝐹:(1...𝑁)⟶dom 𝐸𝐹 Fn (1...𝑁))
6 fseq1hash 14289 . . . . 5 ((𝑁 ∈ ℕ0𝐹 Fn (1...𝑁)) → (♯‘𝐹) = 𝑁)
75, 6sylan2 593 . . . 4 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)⟶dom 𝐸) → (♯‘𝐹) = 𝑁)
81, 7sylan2 593 . . 3 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → (♯‘𝐹) = 𝑁)
9 eleq1 2819 . . . . 5 ((♯‘𝐹) = 𝑁 → ((♯‘𝐹) ∈ ℕ0𝑁 ∈ ℕ0))
10 oveq2 7360 . . . . . 6 ((♯‘𝐹) = 𝑁 → (1...(♯‘𝐹)) = (1...𝑁))
11 f1eq2 6721 . . . . . 6 ((1...(♯‘𝐹)) = (1...𝑁) → (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸𝐹:(1...𝑁)–1-1→dom 𝐸))
1210, 11syl 17 . . . . 5 ((♯‘𝐹) = 𝑁 → (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸𝐹:(1...𝑁)–1-1→dom 𝐸))
139, 12anbi12d 632 . . . 4 ((♯‘𝐹) = 𝑁 → (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸) ↔ (𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸)))
14 dff13 7194 . . . . . 6 (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 ↔ (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)))
15 fz0add1fz1 13641 . . . . . . . . . . 11 (((♯‘𝐹) ∈ ℕ0𝑦 ∈ (0..^(♯‘𝐹))) → (𝑦 + 1) ∈ (1...(♯‘𝐹)))
16 fz0add1fz1 13641 . . . . . . . . . . 11 (((♯‘𝐹) ∈ ℕ0𝑧 ∈ (0..^(♯‘𝐹))) → (𝑧 + 1) ∈ (1...(♯‘𝐹)))
1715, 16anim12dan 619 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))))
18 fveq2 6828 . . . . . . . . . . . . . . . . . . 19 (𝑘 = (𝑦 + 1) → (𝐹𝑘) = (𝐹‘(𝑦 + 1)))
1918eqeq1d 2733 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑦 + 1) → ((𝐹𝑘) = (𝐹𝑙) ↔ (𝐹‘(𝑦 + 1)) = (𝐹𝑙)))
20 eqeq1 2735 . . . . . . . . . . . . . . . . . 18 (𝑘 = (𝑦 + 1) → (𝑘 = 𝑙 ↔ (𝑦 + 1) = 𝑙))
2119, 20imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑘 = (𝑦 + 1) → (((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹𝑙) → (𝑦 + 1) = 𝑙)))
22 fveq2 6828 . . . . . . . . . . . . . . . . . . 19 (𝑙 = (𝑧 + 1) → (𝐹𝑙) = (𝐹‘(𝑧 + 1)))
2322eqeq2d 2742 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑧 + 1) → ((𝐹‘(𝑦 + 1)) = (𝐹𝑙) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
24 eqeq2 2743 . . . . . . . . . . . . . . . . . 18 (𝑙 = (𝑧 + 1) → ((𝑦 + 1) = 𝑙 ↔ (𝑦 + 1) = (𝑧 + 1)))
2523, 24imbi12d 344 . . . . . . . . . . . . . . . . 17 (𝑙 = (𝑧 + 1) → (((𝐹‘(𝑦 + 1)) = (𝐹𝑙) → (𝑦 + 1) = 𝑙) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
2621, 25rspc2v 3583 . . . . . . . . . . . . . . . 16 (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
2726adantl 481 . . . . . . . . . . . . . . 15 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))))
282fargshiftfv 47544 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑦 ∈ (0..^(♯‘𝐹)) → (𝐺𝑦) = (𝐹‘(𝑦 + 1))))
2928expcom 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑦 ∈ (0..^(♯‘𝐹)) → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3029com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑦 ∈ (0..^(♯‘𝐹)) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3130adantr 480 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))))
3231impcom 407 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑦) = (𝐹‘(𝑦 + 1))))
3332impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝐺𝑦) = (𝐹‘(𝑦 + 1)))
342fargshiftfv 47544 . . . . . . . . . . . . . . . . . . . . . . . . 25 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))⟶dom 𝐸) → (𝑧 ∈ (0..^(♯‘𝐹)) → (𝐺𝑧) = (𝐹‘(𝑧 + 1))))
3534expcom 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → (𝑧 ∈ (0..^(♯‘𝐹)) → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3635com13 88 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑧 ∈ (0..^(♯‘𝐹)) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3736adantl 481 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))))
3837impcom 407 . . . . . . . . . . . . . . . . . . . . 21 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (𝐺𝑧) = (𝐹‘(𝑧 + 1))))
3938impcom 407 . . . . . . . . . . . . . . . . . . . 20 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝐺𝑧) = (𝐹‘(𝑧 + 1)))
4033, 39eqeq12d 2747 . . . . . . . . . . . . . . . . . . 19 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
4140adantr 480 . . . . . . . . . . . . . . . . . 18 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
4241adantr 480 . . . . . . . . . . . . . . . . 17 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐺𝑦) = (𝐺𝑧) ↔ (𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1))))
43 elfzoelz 13565 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℤ)
4443zcnd 12584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑦 ∈ (0..^(♯‘𝐹)) → 𝑦 ∈ ℂ)
4544adantr 480 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → 𝑦 ∈ ℂ)
4645adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 𝑦 ∈ ℂ)
47 elfzoelz 13565 . . . . . . . . . . . . . . . . . . . . . . . . . 26 (𝑧 ∈ (0..^(♯‘𝐹)) → 𝑧 ∈ ℤ)
4847zcnd 12584 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑧 ∈ (0..^(♯‘𝐹)) → 𝑧 ∈ ℂ)
4948adantl 481 . . . . . . . . . . . . . . . . . . . . . . . 24 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → 𝑧 ∈ ℂ)
5049adantl 481 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 𝑧 ∈ ℂ)
51 1cnd 11113 . . . . . . . . . . . . . . . . . . . . . . 23 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → 1 ∈ ℂ)
5246, 50, 513jca 1128 . . . . . . . . . . . . . . . . . . . . . 22 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
5352adantl 481 . . . . . . . . . . . . . . . . . . . . 21 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
5453adantr 480 . . . . . . . . . . . . . . . . . . . 20 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ))
55 addcan2 11304 . . . . . . . . . . . . . . . . . . . 20 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 1 ∈ ℂ) → ((𝑦 + 1) = (𝑧 + 1) ↔ 𝑦 = 𝑧))
5654, 55syl 17 . . . . . . . . . . . . . . . . . . 19 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → ((𝑦 + 1) = (𝑧 + 1) ↔ 𝑦 = 𝑧))
5756imbi2d 340 . . . . . . . . . . . . . . . . . 18 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)) ↔ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → 𝑦 = 𝑧)))
5857biimpa 476 . . . . . . . . . . . . . . . . 17 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → 𝑦 = 𝑧))
5942, 58sylbid 240 . . . . . . . . . . . . . . . 16 ((((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) ∧ ((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
6059ex 412 . . . . . . . . . . . . . . 15 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (((𝐹‘(𝑦 + 1)) = (𝐹‘(𝑧 + 1)) → (𝑦 + 1) = (𝑧 + 1)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6127, 60syld 47 . . . . . . . . . . . . . 14 (((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))))) ∧ ((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹)))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6261exp31 419 . . . . . . . . . . . . 13 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))))
6362com24 95 . . . . . . . . . . . 12 (𝐹:(1...(♯‘𝐹))⟶dom 𝐸 → (∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))))
6463imp 406 . . . . . . . . . . 11 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6564com13 88 . . . . . . . . . 10 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → (((𝑦 + 1) ∈ (1...(♯‘𝐹)) ∧ (𝑧 + 1) ∈ (1...(♯‘𝐹))) → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6617, 65mpd 15 . . . . . . . . 9 (((♯‘𝐹) ∈ ℕ0 ∧ (𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹)))) → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
6766expcom 413 . . . . . . . 8 ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((♯‘𝐹) ∈ ℕ0 → ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6867com13 88 . . . . . . 7 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((♯‘𝐹) ∈ ℕ0 → ((𝑦 ∈ (0..^(♯‘𝐹)) ∧ 𝑧 ∈ (0..^(♯‘𝐹))) → ((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))))
6968ralrimdvv 3176 . . . . . 6 ((𝐹:(1...(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑘 ∈ (1...(♯‘𝐹))∀𝑙 ∈ (1...(♯‘𝐹))((𝐹𝑘) = (𝐹𝑙) → 𝑘 = 𝑙)) → ((♯‘𝐹) ∈ ℕ0 → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
7014, 69sylbi 217 . . . . 5 (𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸 → ((♯‘𝐹) ∈ ℕ0 → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
7170impcom 407 . . . 4 (((♯‘𝐹) ∈ ℕ0𝐹:(1...(♯‘𝐹))–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
7213, 71biimtrrdi 254 . . 3 ((♯‘𝐹) = 𝑁 → ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
738, 72mpcom 38 . 2 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧))
74 dff13 7194 . 2 (𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸 ↔ (𝐺:(0..^(♯‘𝐹))⟶dom 𝐸 ∧ ∀𝑦 ∈ (0..^(♯‘𝐹))∀𝑧 ∈ (0..^(♯‘𝐹))((𝐺𝑦) = (𝐺𝑧) → 𝑦 = 𝑧)))
754, 73, 74sylanbrc 583 1 ((𝑁 ∈ ℕ0𝐹:(1...𝑁)–1-1→dom 𝐸) → 𝐺:(0..^(♯‘𝐹))–1-1→dom 𝐸)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wral 3047  cmpt 5174  dom cdm 5619   Fn wfn 6482  wf 6483  1-1wf1 6484  cfv 6487  (class class class)co 7352  cc 11010  0cc0 11012  1c1 11013   + caddc 11015  0cn0 12387  ...cfz 13413  ..^cfzo 13560  chash 14243
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-int 4898  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-1st 7927  df-2nd 7928  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-1o 8391  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-fin 8879  df-card 9838  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-n0 12388  df-z 12475  df-uz 12739  df-fz 13414  df-fzo 13561  df-hash 14244
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator