![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > reueqi | Structured version Visualization version GIF version |
Description: Equality inference for restricted existential uniqueness quantifier. (Contributed by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
reueqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
reueqi | ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reueqi.1 | . . . . 5 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2836 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | 2 | anbi1i 623 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) |
4 | 3 | eubii 2588 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
5 | df-reu 3389 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
6 | df-reu 3389 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃!weu 2571 ∃!wreu 3386 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-eu 2572 df-cleq 2732 df-clel 2819 df-reu 3389 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |