| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > reueqi | Structured version Visualization version GIF version | ||
| Description: Equality inference for restricted existential uniqueness quantifier. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| reueqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| reueqi | ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐵 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reueqi.1 | . . . . 5 ⊢ 𝐴 = 𝐵 | |
| 2 | 1 | eleq2i 2832 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
| 3 | 2 | anbi1i 624 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) |
| 4 | 3 | eubii 2584 | . 2 ⊢ (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
| 5 | df-reu 3380 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 6 | df-reu 3380 | . 2 ⊢ (∃!𝑥 ∈ 𝐵 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
| 7 | 4, 5, 6 | 3bitr4i 303 | 1 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐵 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃!weu 2567 ∃!wreu 3377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-mo 2539 df-eu 2568 df-cleq 2728 df-clel 2815 df-reu 3380 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |