Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rmoeqbii Structured version   Visualization version   GIF version

Theorem rmoeqbii 36144
Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
rmoeqbii.1 𝐴 = 𝐵
rmoeqbii.2 (𝜓𝜒)
Assertion
Ref Expression
rmoeqbii (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐵 𝜒)

Proof of Theorem rmoeqbii
StepHypRef Expression
1 rmoeqbii.1 . . . . 5 𝐴 = 𝐵
21eleq2i 2836 . . . 4 (𝑥𝐴𝑥𝐵)
3 rmoeqbii.2 . . . 4 (𝜓𝜒)
42, 3anbi12i 627 . . 3 ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))
54mobii 2551 . 2 (∃*𝑥(𝑥𝐴𝜓) ↔ ∃*𝑥(𝑥𝐵𝜒))
6 df-rmo 3388 . 2 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥(𝑥𝐴𝜓))
7 df-rmo 3388 . 2 (∃*𝑥𝐵 𝜒 ↔ ∃*𝑥(𝑥𝐵𝜒))
85, 6, 73bitr4i 303 1 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐵 𝜒)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  ∃*wmo 2541  ∃*wrmo 3387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1778  df-mo 2543  df-cleq 2732  df-clel 2819  df-rmo 3388
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator