![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > rmoeqbii | Structured version Visualization version GIF version |
Description: Equality inference for restricted at-most-one quantifier. (Contributed by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
rmoeqbii.1 | ⊢ 𝐴 = 𝐵 |
rmoeqbii.2 | ⊢ (𝜓 ↔ 𝜒) |
Ref | Expression |
---|---|
rmoeqbii | ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐵 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rmoeqbii.1 | . . . . 5 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2836 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | rmoeqbii.2 | . . . 4 ⊢ (𝜓 ↔ 𝜒) | |
4 | 2, 3 | anbi12i 627 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐵 ∧ 𝜒)) |
5 | 4 | mobii 2551 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) |
6 | df-rmo 3388 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
7 | df-rmo 3388 | . 2 ⊢ (∃*𝑥 ∈ 𝐵 𝜒 ↔ ∃*𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
8 | 5, 6, 7 | 3bitr4i 303 | 1 ⊢ (∃*𝑥 ∈ 𝐴 𝜓 ↔ ∃*𝑥 ∈ 𝐵 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃*wmo 2541 ∃*wrmo 3387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-cleq 2732 df-clel 2819 df-rmo 3388 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |