![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
Ref | Expression |
---|---|
rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rexbii2 3089 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2105 ∃wrex 3069 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1781 df-rex 3070 |
This theorem is referenced by: rexbii 3093 rexanid 3095 2rexbiia 3214 ceqsrexbv 3644 reu8 3729 f1oweALT 7963 reldm 8034 seqomlem2 8457 fofinf1o 9333 wdom2d 9581 unbndrank 9843 cfsmolem 10271 fin1a2lem5 10405 fin1a2lem6 10406 infm3 12180 wwlktovfo 14916 even2n 16292 smndex1mnd 18833 cycsubmel 19122 znf1o 21417 lmres 23124 ist1-2 23171 itg2monolem1 25600 lhop1lem 25866 elaa 26168 ulmcau 26246 reeff1o 26299 recosf1o 26384 chpo1ubb 27328 noetainflem4 27587 0reno 28106 istrkg2ld 28145 wlkswwlksf1o 29567 wwlksnextsurj 29588 nmopnegi 31652 nmop0 31673 nmfn0 31674 adjbd1o 31772 atom1d 32040 abfmpunirn 32311 rearchi 32898 eulerpartgbij 33836 eulerpartlemgh 33842 subfacp1lem3 34638 dfrdg2 35238 heiborlem7 37151 qsresid 37660 eq0rabdioph 41979 elicores 44707 liminfpnfuz 44993 xlimpnfxnegmnf2 45035 fourierdlem70 45353 fourierdlem80 45363 ovolval3 45824 rexrsb 46269 |
Copyright terms: Public domain | W3C validator |