| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
| Ref | Expression |
|---|---|
| rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rexbii2 3080 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∃wrex 3061 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3062 |
| This theorem is referenced by: rexbii 3084 rexanid 3086 2rexbiia 3206 ceqsrexbv 3640 reu8 3721 f1oweALT 7976 reldm 8048 seqomlem2 8470 fofinf1o 9349 wdom2d 9599 unbndrank 9861 cfsmolem 10289 fin1a2lem5 10423 fin1a2lem6 10424 infm3 12206 wwlktovfo 14982 even2n 16366 smndex1mnd 18893 cycsubmel 19188 znf1o 21517 lmres 23243 ist1-2 23290 itg2monolem1 25708 lhop1lem 25975 elaa 26281 ulmcau 26361 reeff1o 26414 recosf1o 26501 chpo1ubb 27449 noetainflem4 27709 bdayn0sf1o 28316 0reno 28405 istrkg2ld 28444 wlkswwlksf1o 29866 wwlksnextsurj 29887 nmopnegi 31951 nmop0 31972 nmfn0 31973 adjbd1o 32071 atom1d 32339 abfmpunirn 32635 rearchi 33366 eulerpartgbij 34409 eulerpartlemgh 34415 subfacp1lem3 35209 dfrdg2 35818 heiborlem7 37846 qsresid 38348 cxpi11d 42359 fimgmcyc 42524 eq0rabdioph 42766 elicores 45529 liminfpnfuz 45812 xlimpnfxnegmnf2 45854 fourierdlem70 46172 fourierdlem80 46182 ovolval3 46643 rexrsb 47096 slotresfo 48840 basresposfo 48919 |
| Copyright terms: Public domain | W3C validator |