MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexbiia Structured version   Visualization version   GIF version

Theorem rexbiia 3086
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.)
Hypothesis
Ref Expression
rexbiia.1 (𝑥𝐴 → (𝜑𝜓))
Assertion
Ref Expression
rexbiia (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝜓)

Proof of Theorem rexbiia
StepHypRef Expression
1 rexbiia.1 . . 3 (𝑥𝐴 → (𝜑𝜓))
21pm5.32i 574 . 2 ((𝑥𝐴𝜑) ↔ (𝑥𝐴𝜓))
32rexbii2 3084 1 (∃𝑥𝐴 𝜑 ↔ ∃𝑥𝐴 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2098  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-rex 3065
This theorem is referenced by:  rexbii  3088  rexanid  3090  2rexbiia  3209  ceqsrexbv  3639  reu8  3724  f1oweALT  7955  reldm  8026  seqomlem2  8449  fofinf1o  9326  wdom2d  9574  unbndrank  9836  cfsmolem  10264  fin1a2lem5  10398  fin1a2lem6  10399  infm3  12174  wwlktovfo  14912  even2n  16289  smndex1mnd  18832  cycsubmel  19123  znf1o  21441  lmres  23154  ist1-2  23201  itg2monolem1  25630  lhop1lem  25896  elaa  26201  ulmcau  26281  reeff1o  26334  recosf1o  26419  chpo1ubb  27364  noetainflem4  27623  0reno  28175  istrkg2ld  28214  wlkswwlksf1o  29637  wwlksnextsurj  29658  nmopnegi  31722  nmop0  31743  nmfn0  31744  adjbd1o  31842  atom1d  32110  abfmpunirn  32381  rearchi  32963  eulerpartgbij  33900  eulerpartlemgh  33906  subfacp1lem3  34700  dfrdg2  35299  heiborlem7  37197  qsresid  37706  cxpi11d  41792  eq0rabdioph  42074  elicores  44800  liminfpnfuz  45086  xlimpnfxnegmnf2  45128  fourierdlem70  45446  fourierdlem80  45456  ovolval3  45917  rexrsb  46362
  Copyright terms: Public domain W3C validator