| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
| Ref | Expression |
|---|---|
| rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rexbii2 3072 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rexbii 3076 rexanid 3078 2rexbiia 3198 ceqsrexbv 3622 reu8 3704 f1oweALT 7951 reldm 8023 seqomlem2 8419 fofinf1o 9283 wdom2d 9533 unbndrank 9795 cfsmolem 10223 fin1a2lem5 10357 fin1a2lem6 10358 infm3 12142 wwlktovfo 14924 even2n 16312 smndex1mnd 18837 cycsubmel 19132 znf1o 21461 lmres 23187 ist1-2 23234 itg2monolem1 25651 lhop1lem 25918 elaa 26224 ulmcau 26304 reeff1o 26357 recosf1o 26444 chpo1ubb 27392 noetainflem4 27652 bdayn0sf1o 28259 0reno 28348 istrkg2ld 28387 wlkswwlksf1o 29809 wwlksnextsurj 29830 nmopnegi 31894 nmop0 31915 nmfn0 31916 adjbd1o 32014 atom1d 32282 abfmpunirn 32576 rearchi 33317 eulerpartgbij 34363 eulerpartlemgh 34369 subfacp1lem3 35169 dfrdg2 35783 heiborlem7 37811 qsresid 38313 cxpi11d 42331 fimgmcyc 42522 eq0rabdioph 42764 elicores 45531 liminfpnfuz 45814 xlimpnfxnegmnf2 45856 fourierdlem70 46174 fourierdlem80 46184 ovolval3 46645 rexrsb 47101 slotresfo 48887 basresposfo 48966 |
| Copyright terms: Public domain | W3C validator |