| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
| Ref | Expression |
|---|---|
| rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rexbii2 3075 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3057 |
| This theorem is referenced by: rexbii 3079 rexanid 3081 2rexbiia 3193 ceqsrexbv 3611 reu8 3692 f1oweALT 7904 reldm 7976 seqomlem2 8370 fofinf1o 9216 wdom2d 9466 unbndrank 9735 cfsmolem 10161 fin1a2lem5 10295 fin1a2lem6 10296 infm3 12081 wwlktovfo 14865 even2n 16253 smndex1mnd 18818 cycsubmel 19113 znf1o 21489 lmres 23216 ist1-2 23263 itg2monolem1 25679 lhop1lem 25946 elaa 26252 ulmcau 26332 reeff1o 26385 recosf1o 26472 chpo1ubb 27420 noetainflem4 27680 bdayn0sf1o 28296 0reno 28400 istrkg2ld 28439 wlkswwlksf1o 29858 wwlksnextsurj 29879 nmopnegi 31943 nmop0 31964 nmfn0 31965 adjbd1o 32063 atom1d 32331 abfmpunirn 32632 rearchi 33309 eulerpartgbij 34383 eulerpartlemgh 34389 subfacp1lem3 35224 dfrdg2 35835 heiborlem7 37863 qsresid 38365 cxpi11d 42382 fimgmcyc 42573 eq0rabdioph 42815 elicores 45579 liminfpnfuz 45860 xlimpnfxnegmnf2 45902 fourierdlem70 46220 fourierdlem80 46230 ovolval3 46691 rexrsb 47137 slotresfo 48936 basresposfo 49015 |
| Copyright terms: Public domain | W3C validator |