Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
Ref | Expression |
---|---|
rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rexbii2 3175 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-rex 3069 |
This theorem is referenced by: rexbii 3177 rexanid 3182 2rexbiia 3226 ceqsrexbv 3579 reu8 3663 f1oweALT 7788 reldm 7858 seqomlem2 8252 fofinf1o 9024 wdom2d 9269 unbndrank 9531 cfsmolem 9957 fin1a2lem5 10091 fin1a2lem6 10092 infm3 11864 wwlktovfo 14601 even2n 15979 smndex1mnd 18464 cycsubmel 18734 znf1o 20671 lmres 22359 ist1-2 22406 itg2monolem1 24820 lhop1lem 25082 elaa 25381 ulmcau 25459 reeff1o 25511 recosf1o 25596 chpo1ubb 26534 istrkg2ld 26725 wlkswwlksf1o 28145 wwlksnextsurj 28166 nmopnegi 30228 nmop0 30249 nmfn0 30250 adjbd1o 30348 atom1d 30616 abfmpunirn 30891 rearchi 31448 eulerpartgbij 32239 eulerpartlemgh 32245 subfacp1lem3 33044 dfrdg2 33677 noetainflem4 33870 heiborlem7 35902 qsresid 36387 eq0rabdioph 40514 elicores 42961 liminfpnfuz 43247 xlimpnfxnegmnf2 43289 fourierdlem70 43607 fourierdlem80 43617 ovolval3 44075 rexrsb 44479 |
Copyright terms: Public domain | W3C validator |