![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
Ref | Expression |
---|---|
rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rexbii2 3096 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-rex 3077 |
This theorem is referenced by: rexbii 3100 rexanid 3102 2rexbiia 3224 ceqsrexbv 3669 reu8 3755 f1oweALT 8013 reldm 8085 seqomlem2 8507 fofinf1o 9400 wdom2d 9649 unbndrank 9911 cfsmolem 10339 fin1a2lem5 10473 fin1a2lem6 10474 infm3 12254 wwlktovfo 15007 even2n 16390 smndex1mnd 18945 cycsubmel 19240 znf1o 21593 lmres 23329 ist1-2 23376 itg2monolem1 25805 lhop1lem 26072 elaa 26376 ulmcau 26456 reeff1o 26509 recosf1o 26595 chpo1ubb 27543 noetainflem4 27803 0reno 28447 istrkg2ld 28486 wlkswwlksf1o 29912 wwlksnextsurj 29933 nmopnegi 31997 nmop0 32018 nmfn0 32019 adjbd1o 32117 atom1d 32385 abfmpunirn 32670 rearchi 33339 eulerpartgbij 34337 eulerpartlemgh 34343 subfacp1lem3 35150 dfrdg2 35759 heiborlem7 37777 qsresid 38281 cxpi11d 42331 fimgmcyc 42489 eq0rabdioph 42732 elicores 45451 liminfpnfuz 45737 xlimpnfxnegmnf2 45779 fourierdlem70 46097 fourierdlem80 46107 ovolval3 46568 rexrsb 47015 |
Copyright terms: Public domain | W3C validator |