![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
Ref | Expression |
---|---|
rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rexbii2 3088 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2106 ∃wrex 3068 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1777 df-rex 3069 |
This theorem is referenced by: rexbii 3092 rexanid 3094 2rexbiia 3216 ceqsrexbv 3656 reu8 3742 f1oweALT 7996 reldm 8068 seqomlem2 8490 fofinf1o 9370 wdom2d 9618 unbndrank 9880 cfsmolem 10308 fin1a2lem5 10442 fin1a2lem6 10443 infm3 12225 wwlktovfo 14994 even2n 16376 smndex1mnd 18936 cycsubmel 19231 znf1o 21588 lmres 23324 ist1-2 23371 itg2monolem1 25800 lhop1lem 26067 elaa 26373 ulmcau 26453 reeff1o 26506 recosf1o 26592 chpo1ubb 27540 noetainflem4 27800 0reno 28444 istrkg2ld 28483 wlkswwlksf1o 29909 wwlksnextsurj 29930 nmopnegi 31994 nmop0 32015 nmfn0 32016 adjbd1o 32114 atom1d 32382 abfmpunirn 32669 rearchi 33354 eulerpartgbij 34354 eulerpartlemgh 34360 subfacp1lem3 35167 dfrdg2 35777 heiborlem7 37804 qsresid 38307 cxpi11d 42358 fimgmcyc 42521 eq0rabdioph 42764 elicores 45486 liminfpnfuz 45772 xlimpnfxnegmnf2 45814 fourierdlem70 46132 fourierdlem80 46142 ovolval3 46603 rexrsb 47050 |
Copyright terms: Public domain | W3C validator |