| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
| Ref | Expression |
|---|---|
| rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rexbii2 3076 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 ∃wrex 3057 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-rex 3058 |
| This theorem is referenced by: rexbii 3080 rexanid 3082 2rexbiia 3194 ceqsrexbv 3607 reu8 3688 f1oweALT 7912 reldm 7984 seqomlem2 8378 fofinf1o 9225 wdom2d 9475 unbndrank 9744 cfsmolem 10170 fin1a2lem5 10304 fin1a2lem6 10305 infm3 12090 wwlktovfo 14869 even2n 16257 smndex1mnd 18822 cycsubmel 19116 znf1o 21492 lmres 23218 ist1-2 23265 itg2monolem1 25681 lhop1lem 25948 elaa 26254 ulmcau 26334 reeff1o 26387 recosf1o 26474 chpo1ubb 27422 noetainflem4 27682 bdayn0sf1o 28298 0reno 28402 istrkg2ld 28441 wlkswwlksf1o 29861 wwlksnextsurj 29882 nmopnegi 31949 nmop0 31970 nmfn0 31971 adjbd1o 32069 atom1d 32337 abfmpunirn 32638 rearchi 33320 eulerpartgbij 34408 eulerpartlemgh 34414 subfacp1lem3 35249 dfrdg2 35860 heiborlem7 37880 qsresid 38386 cxpi11d 42464 fimgmcyc 42655 eq0rabdioph 42896 elicores 45660 liminfpnfuz 45941 xlimpnfxnegmnf2 45983 fourierdlem70 46301 fourierdlem80 46311 ovolval3 46772 rexrsb 47227 slotresfo 49026 basresposfo 49105 |
| Copyright terms: Public domain | W3C validator |