| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
| Ref | Expression |
|---|---|
| rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rexbii2 3073 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3055 |
| This theorem is referenced by: rexbii 3077 rexanid 3079 2rexbiia 3199 ceqsrexbv 3625 reu8 3707 f1oweALT 7954 reldm 8026 seqomlem2 8422 fofinf1o 9290 wdom2d 9540 unbndrank 9802 cfsmolem 10230 fin1a2lem5 10364 fin1a2lem6 10365 infm3 12149 wwlktovfo 14931 even2n 16319 smndex1mnd 18844 cycsubmel 19139 znf1o 21468 lmres 23194 ist1-2 23241 itg2monolem1 25658 lhop1lem 25925 elaa 26231 ulmcau 26311 reeff1o 26364 recosf1o 26451 chpo1ubb 27399 noetainflem4 27659 bdayn0sf1o 28266 0reno 28355 istrkg2ld 28394 wlkswwlksf1o 29816 wwlksnextsurj 29837 nmopnegi 31901 nmop0 31922 nmfn0 31923 adjbd1o 32021 atom1d 32289 abfmpunirn 32583 rearchi 33324 eulerpartgbij 34370 eulerpartlemgh 34376 subfacp1lem3 35176 dfrdg2 35790 heiborlem7 37818 qsresid 38320 cxpi11d 42338 fimgmcyc 42529 eq0rabdioph 42771 elicores 45538 liminfpnfuz 45821 xlimpnfxnegmnf2 45863 fourierdlem70 46181 fourierdlem80 46191 ovolval3 46652 rexrsb 47105 slotresfo 48891 basresposfo 48970 |
| Copyright terms: Public domain | W3C validator |