| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version | ||
| Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
| Ref | Expression |
|---|---|
| rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
| Ref | Expression |
|---|---|
| rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
| 2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
| 3 | 2 | rexbii2 3072 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3054 |
| This theorem is referenced by: rexbii 3076 rexanid 3078 2rexbiia 3190 ceqsrexbv 3613 reu8 3695 f1oweALT 7914 reldm 7986 seqomlem2 8380 fofinf1o 9241 wdom2d 9491 unbndrank 9757 cfsmolem 10183 fin1a2lem5 10317 fin1a2lem6 10318 infm3 12102 wwlktovfo 14883 even2n 16271 smndex1mnd 18802 cycsubmel 19097 znf1o 21476 lmres 23203 ist1-2 23250 itg2monolem1 25667 lhop1lem 25934 elaa 26240 ulmcau 26320 reeff1o 26373 recosf1o 26460 chpo1ubb 27408 noetainflem4 27668 bdayn0sf1o 28282 0reno 28384 istrkg2ld 28423 wlkswwlksf1o 29842 wwlksnextsurj 29863 nmopnegi 31927 nmop0 31948 nmfn0 31949 adjbd1o 32047 atom1d 32315 abfmpunirn 32609 rearchi 33296 eulerpartgbij 34342 eulerpartlemgh 34348 subfacp1lem3 35157 dfrdg2 35771 heiborlem7 37799 qsresid 38301 cxpi11d 42319 fimgmcyc 42510 eq0rabdioph 42752 elicores 45518 liminfpnfuz 45801 xlimpnfxnegmnf2 45843 fourierdlem70 46161 fourierdlem80 46171 ovolval3 46632 rexrsb 47088 slotresfo 48887 basresposfo 48966 |
| Copyright terms: Public domain | W3C validator |