![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
Ref | Expression |
---|---|
rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 575 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rexbii2 3090 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ∃wrex 3070 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1782 df-rex 3071 |
This theorem is referenced by: rexbii 3094 rexanid 3096 2rexbiia 3215 ceqsrexbv 3644 reu8 3729 f1oweALT 7958 reldm 8029 seqomlem2 8450 fofinf1o 9326 wdom2d 9574 unbndrank 9836 cfsmolem 10264 fin1a2lem5 10398 fin1a2lem6 10399 infm3 12172 wwlktovfo 14908 even2n 16284 smndex1mnd 18790 cycsubmel 19076 znf1o 21106 lmres 22803 ist1-2 22850 itg2monolem1 25267 lhop1lem 25529 elaa 25828 ulmcau 25906 reeff1o 25958 recosf1o 26043 chpo1ubb 26981 noetainflem4 27240 istrkg2ld 27708 wlkswwlksf1o 29130 wwlksnextsurj 29151 nmopnegi 31213 nmop0 31234 nmfn0 31235 adjbd1o 31333 atom1d 31601 abfmpunirn 31872 rearchi 32456 eulerpartgbij 33366 eulerpartlemgh 33372 subfacp1lem3 34168 dfrdg2 34762 heiborlem7 36680 qsresid 37189 eq0rabdioph 41504 elicores 44236 liminfpnfuz 44522 xlimpnfxnegmnf2 44564 fourierdlem70 44882 fourierdlem80 44892 ovolval3 45353 rexrsb 45798 |
Copyright terms: Public domain | W3C validator |