Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
Ref | Expression |
---|---|
rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 575 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rexbii2 3179 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3070 |
This theorem is referenced by: rexbii 3181 rexanid 3183 2rexbiia 3227 ceqsrexbv 3586 reu8 3668 f1oweALT 7815 reldm 7885 seqomlem2 8282 fofinf1o 9094 wdom2d 9339 unbndrank 9600 cfsmolem 10026 fin1a2lem5 10160 fin1a2lem6 10161 infm3 11934 wwlktovfo 14673 even2n 16051 smndex1mnd 18549 cycsubmel 18819 znf1o 20759 lmres 22451 ist1-2 22498 itg2monolem1 24915 lhop1lem 25177 elaa 25476 ulmcau 25554 reeff1o 25606 recosf1o 25691 chpo1ubb 26629 istrkg2ld 26821 wlkswwlksf1o 28244 wwlksnextsurj 28265 nmopnegi 30327 nmop0 30348 nmfn0 30349 adjbd1o 30447 atom1d 30715 abfmpunirn 30989 rearchi 31546 eulerpartgbij 32339 eulerpartlemgh 32345 subfacp1lem3 33144 dfrdg2 33771 noetainflem4 33943 heiborlem7 35975 qsresid 36460 eq0rabdioph 40598 elicores 43071 liminfpnfuz 43357 xlimpnfxnegmnf2 43399 fourierdlem70 43717 fourierdlem80 43727 ovolval3 44185 rexrsb 44592 |
Copyright terms: Public domain | W3C validator |