![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexbiia | Structured version Visualization version GIF version |
Description: Inference adding restricted existential quantifier to both sides of an equivalence. (Contributed by NM, 26-Oct-1999.) |
Ref | Expression |
---|---|
rexbiia.1 | ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) |
Ref | Expression |
---|---|
rexbiia | ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexbiia.1 | . . 3 ⊢ (𝑥 ∈ 𝐴 → (𝜑 ↔ 𝜓)) | |
2 | 1 | pm5.32i 574 | . 2 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐴 ∧ 𝜓)) |
3 | 2 | rexbii2 3084 | 1 ⊢ (∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑥 ∈ 𝐴 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2098 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1774 df-rex 3065 |
This theorem is referenced by: rexbii 3088 rexanid 3090 2rexbiia 3209 ceqsrexbv 3639 reu8 3724 f1oweALT 7955 reldm 8026 seqomlem2 8449 fofinf1o 9326 wdom2d 9574 unbndrank 9836 cfsmolem 10264 fin1a2lem5 10398 fin1a2lem6 10399 infm3 12174 wwlktovfo 14912 even2n 16289 smndex1mnd 18832 cycsubmel 19123 znf1o 21441 lmres 23154 ist1-2 23201 itg2monolem1 25630 lhop1lem 25896 elaa 26201 ulmcau 26281 reeff1o 26334 recosf1o 26419 chpo1ubb 27364 noetainflem4 27623 0reno 28175 istrkg2ld 28214 wlkswwlksf1o 29637 wwlksnextsurj 29658 nmopnegi 31722 nmop0 31743 nmfn0 31744 adjbd1o 31842 atom1d 32110 abfmpunirn 32381 rearchi 32963 eulerpartgbij 33900 eulerpartlemgh 33906 subfacp1lem3 34700 dfrdg2 35299 heiborlem7 37197 qsresid 37706 cxpi11d 41792 eq0rabdioph 42074 elicores 44800 liminfpnfuz 45086 xlimpnfxnegmnf2 45128 fourierdlem70 45446 fourierdlem80 45456 ovolval3 45917 rexrsb 46362 |
Copyright terms: Public domain | W3C validator |