Proof of Theorem sn-axrep5v
| Step | Hyp | Ref
| Expression |
| 1 | | axrep6 5288 |
. 2
⊢
(∀𝑤∃*𝑧(𝑤 ∈ 𝑥 ∧ 𝜑) → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 (𝑤 ∈ 𝑥 ∧ 𝜑))) |
| 2 | | 19.37v 1991 |
. . . . 5
⊢
(∃𝑦(𝑤 ∈ 𝑥 → ∀𝑧(𝜑 → 𝑧 = 𝑦)) ↔ (𝑤 ∈ 𝑥 → ∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦))) |
| 3 | | impexp 450 |
. . . . . . . 8
⊢ (((𝑤 ∈ 𝑥 ∧ 𝜑) → 𝑧 = 𝑦) ↔ (𝑤 ∈ 𝑥 → (𝜑 → 𝑧 = 𝑦))) |
| 4 | 3 | albii 1819 |
. . . . . . 7
⊢
(∀𝑧((𝑤 ∈ 𝑥 ∧ 𝜑) → 𝑧 = 𝑦) ↔ ∀𝑧(𝑤 ∈ 𝑥 → (𝜑 → 𝑧 = 𝑦))) |
| 5 | | 19.21v 1939 |
. . . . . . 7
⊢
(∀𝑧(𝑤 ∈ 𝑥 → (𝜑 → 𝑧 = 𝑦)) ↔ (𝑤 ∈ 𝑥 → ∀𝑧(𝜑 → 𝑧 = 𝑦))) |
| 6 | 4, 5 | bitri 275 |
. . . . . 6
⊢
(∀𝑧((𝑤 ∈ 𝑥 ∧ 𝜑) → 𝑧 = 𝑦) ↔ (𝑤 ∈ 𝑥 → ∀𝑧(𝜑 → 𝑧 = 𝑦))) |
| 7 | 6 | exbii 1848 |
. . . . 5
⊢
(∃𝑦∀𝑧((𝑤 ∈ 𝑥 ∧ 𝜑) → 𝑧 = 𝑦) ↔ ∃𝑦(𝑤 ∈ 𝑥 → ∀𝑧(𝜑 → 𝑧 = 𝑦))) |
| 8 | | df-mo 2540 |
. . . . . 6
⊢
(∃*𝑧𝜑 ↔ ∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦)) |
| 9 | 8 | imbi2i 336 |
. . . . 5
⊢ ((𝑤 ∈ 𝑥 → ∃*𝑧𝜑) ↔ (𝑤 ∈ 𝑥 → ∃𝑦∀𝑧(𝜑 → 𝑧 = 𝑦))) |
| 10 | 2, 7, 9 | 3bitr4i 303 |
. . . 4
⊢
(∃𝑦∀𝑧((𝑤 ∈ 𝑥 ∧ 𝜑) → 𝑧 = 𝑦) ↔ (𝑤 ∈ 𝑥 → ∃*𝑧𝜑)) |
| 11 | 10 | albii 1819 |
. . 3
⊢
(∀𝑤∃𝑦∀𝑧((𝑤 ∈ 𝑥 ∧ 𝜑) → 𝑧 = 𝑦) ↔ ∀𝑤(𝑤 ∈ 𝑥 → ∃*𝑧𝜑)) |
| 12 | | df-mo 2540 |
. . . 4
⊢
(∃*𝑧(𝑤 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑦∀𝑧((𝑤 ∈ 𝑥 ∧ 𝜑) → 𝑧 = 𝑦)) |
| 13 | 12 | albii 1819 |
. . 3
⊢
(∀𝑤∃*𝑧(𝑤 ∈ 𝑥 ∧ 𝜑) ↔ ∀𝑤∃𝑦∀𝑧((𝑤 ∈ 𝑥 ∧ 𝜑) → 𝑧 = 𝑦)) |
| 14 | | df-ral 3062 |
. . 3
⊢
(∀𝑤 ∈
𝑥 ∃*𝑧𝜑 ↔ ∀𝑤(𝑤 ∈ 𝑥 → ∃*𝑧𝜑)) |
| 15 | 11, 13, 14 | 3bitr4i 303 |
. 2
⊢
(∀𝑤∃*𝑧(𝑤 ∈ 𝑥 ∧ 𝜑) ↔ ∀𝑤 ∈ 𝑥 ∃*𝑧𝜑) |
| 16 | | rexanid 3096 |
. . . . 5
⊢
(∃𝑤 ∈
𝑥 (𝑤 ∈ 𝑥 ∧ 𝜑) ↔ ∃𝑤 ∈ 𝑥 𝜑) |
| 17 | 16 | bibi2i 337 |
. . . 4
⊢ ((𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 (𝑤 ∈ 𝑥 ∧ 𝜑)) ↔ (𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) |
| 18 | 17 | albii 1819 |
. . 3
⊢
(∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 (𝑤 ∈ 𝑥 ∧ 𝜑)) ↔ ∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) |
| 19 | 18 | exbii 1848 |
. 2
⊢
(∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 (𝑤 ∈ 𝑥 ∧ 𝜑)) ↔ ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) |
| 20 | 1, 15, 19 | 3imtr3i 291 |
1
⊢
(∀𝑤 ∈
𝑥 ∃*𝑧𝜑 → ∃𝑦∀𝑧(𝑧 ∈ 𝑦 ↔ ∃𝑤 ∈ 𝑥 𝜑)) |