| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexcomOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rexcom 3268 as of 8-Dec-2024. (Contributed by NM, 19-Nov-1995.) (Revised by Mario Carneiro, 14-Oct-2016.) (Proof shortened by BJ, 26-Aug-2023.) (New usage is discouraged.) (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| rexcomOLD | ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3056 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 2 | 1 | rexbii 3078 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑)) |
| 3 | rexcom4 3266 | . 2 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦(𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑦∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑)) | |
| 4 | r19.42v 3171 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ (𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) | |
| 5 | 4 | exbii 1848 | . . 3 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) |
| 6 | df-rex 3056 | . . 3 ⊢ (∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑 ↔ ∃𝑦(𝑦 ∈ 𝐵 ∧ ∃𝑥 ∈ 𝐴 𝜑)) | |
| 7 | 5, 6 | bitr4i 278 | . 2 ⊢ (∃𝑦∃𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 ∧ 𝜑) ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| 8 | 2, 3, 7 | 3bitri 297 | 1 ⊢ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 ∃𝑥 ∈ 𝐴 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 ∃wrex 3055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-11 2158 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-rex 3056 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |