Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexcom4a | Structured version Visualization version GIF version |
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) |
Ref | Expression |
---|---|
rexcom4a | ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexcom4 3233 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
2 | 19.42v 1957 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | |
3 | 2 | rexbii 3181 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
4 | 1, 3 | bitr3i 276 | 1 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∃wex 1782 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-11 2154 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-rex 3070 |
This theorem is referenced by: rexcom4b 3461 bj-rexcom4bv 35067 bj-rexcom4b 35068 |
Copyright terms: Public domain | W3C validator |