|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rexcom4a | Structured version Visualization version GIF version | ||
| Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.) | 
| Ref | Expression | 
|---|---|
| rexcom4a | ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexcom4 3287 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓)) | |
| 2 | 19.42v 1952 | . . 3 ⊢ (∃𝑥(𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓)) | |
| 3 | 2 | rexbii 3093 | . 2 ⊢ (∃𝑦 ∈ 𝐴 ∃𝑥(𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) | 
| 4 | 1, 3 | bitr3i 277 | 1 ⊢ (∃𝑥∃𝑦 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐴 (𝜑 ∧ ∃𝑥𝜓)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1778 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-11 2156 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-rex 3070 | 
| This theorem is referenced by: rexcom4b 3512 bj-rexcom4bv 36884 bj-rexcom4b 36885 tfsconcatlem 43354 | 
| Copyright terms: Public domain | W3C validator |