MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexcom4a Structured version   Visualization version   GIF version

Theorem rexcom4a 3181
Description: Specialized existential commutation lemma. (Contributed by Jeff Madsen, 1-Jun-2011.)
Assertion
Ref Expression
rexcom4a (∃𝑥𝑦𝐴 (𝜑𝜓) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥𝜓))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑦)   𝜓(𝑥,𝑦)   𝐴(𝑦)

Proof of Theorem rexcom4a
StepHypRef Expression
1 rexcom4 3179 . 2 (∃𝑦𝐴𝑥(𝜑𝜓) ↔ ∃𝑥𝑦𝐴 (𝜑𝜓))
2 19.42v 1958 . . 3 (∃𝑥(𝜑𝜓) ↔ (𝜑 ∧ ∃𝑥𝜓))
32rexbii 3177 . 2 (∃𝑦𝐴𝑥(𝜑𝜓) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥𝜓))
41, 3bitr3i 276 1 (∃𝑥𝑦𝐴 (𝜑𝜓) ↔ ∃𝑦𝐴 (𝜑 ∧ ∃𝑥𝜓))
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 395  wex 1783  wrex 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-11 2156
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1784  df-rex 3069
This theorem is referenced by:  rexcom4b  3451  bj-rexcom4bv  34994  bj-rexcom4b  34995
  Copyright terms: Public domain W3C validator