MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqbidvv Structured version   Visualization version   GIF version

Theorem raleqbidvv 3338
Description: Version of raleqbidv 3336 with additional disjoint variable conditions, not requiring ax-8 2108 nor df-clel 2816. (Contributed by BJ, 22-Sep-2024.)
Hypotheses
Ref Expression
raleqbidvv.1 (𝜑𝐴 = 𝐵)
raleqbidvv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
raleqbidvv (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem raleqbidvv
StepHypRef Expression
1 raleqbidvv.2 . . . . . 6 (𝜑 → (𝜓𝜒))
21alrimiv 1930 . . . . 5 (𝜑 → ∀𝑥(𝜓𝜒))
3 raleqbidvv.1 . . . . . 6 (𝜑𝐴 = 𝐵)
4 dfcleq 2731 . . . . . 6 (𝐴 = 𝐵 ↔ ∀𝑥(𝑥𝐴𝑥𝐵))
53, 4sylib 217 . . . . 5 (𝜑 → ∀𝑥(𝑥𝐴𝑥𝐵))
6 19.26 1873 . . . . 5 (∀𝑥((𝜓𝜒) ∧ (𝑥𝐴𝑥𝐵)) ↔ (∀𝑥(𝜓𝜒) ∧ ∀𝑥(𝑥𝐴𝑥𝐵)))
72, 5, 6sylanbrc 583 . . . 4 (𝜑 → ∀𝑥((𝜓𝜒) ∧ (𝑥𝐴𝑥𝐵)))
8 imbi12 347 . . . . 5 ((𝑥𝐴𝑥𝐵) → ((𝜓𝜒) → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒))))
98impcom 408 . . . 4 (((𝜓𝜒) ∧ (𝑥𝐴𝑥𝐵)) → ((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
107, 9sylg 1825 . . 3 (𝜑 → ∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)))
11 albi 1821 . . 3 (∀𝑥((𝑥𝐴𝜓) ↔ (𝑥𝐵𝜒)) → (∀𝑥(𝑥𝐴𝜓) ↔ ∀𝑥(𝑥𝐵𝜒)))
1210, 11syl 17 . 2 (𝜑 → (∀𝑥(𝑥𝐴𝜓) ↔ ∀𝑥(𝑥𝐵𝜒)))
13 df-ral 3069 . 2 (∀𝑥𝐴 𝜓 ↔ ∀𝑥(𝑥𝐴𝜓))
14 df-ral 3069 . 2 (∀𝑥𝐵 𝜒 ↔ ∀𝑥(𝑥𝐵𝜒))
1512, 13, 143bitr4g 314 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1537   = wceq 1539  wcel 2106  wral 3064
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-9 2116  ax-ext 2709
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-cleq 2730  df-ral 3069
This theorem is referenced by:  rexeqbidvv  3339  raleqbi1dv  3340  postcposALT  46362
  Copyright terms: Public domain W3C validator