MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  raleqbidvv Structured version   Visualization version   GIF version

Theorem raleqbidvv 3321
Description: Version of raleqbidv 3334 with additional disjoint variable conditions, not requiring ax-8 2100 nor df-clel 2802. (Contributed by BJ, 22-Sep-2024.)
Hypotheses
Ref Expression
raleqbidvv.1 (𝜑𝐴 = 𝐵)
raleqbidvv.2 (𝜑 → (𝜓𝜒))
Assertion
Ref Expression
raleqbidvv (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥   𝑥,𝐴   𝑥,𝐵
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)

Proof of Theorem raleqbidvv
StepHypRef Expression
1 raleqbidvv.1 . 2 (𝜑𝐴 = 𝐵)
2 raleqbidvv.2 . . 3 (𝜑 → (𝜓𝜒))
32adantr 480 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
41, 3raleqbidva 3319 1 (𝜑 → (∀𝑥𝐴 𝜓 ↔ ∀𝑥𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1533  wcel 2098  wral 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-cleq 2716  df-ral 3054  df-rex 3063
This theorem is referenced by:  rexeqbidvvOLD  3324  raleqbi1dv  3325  postcposALT  47855
  Copyright terms: Public domain W3C validator