| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > raleqbidvv | Structured version Visualization version GIF version | ||
| Description: Version of raleqbidv 3325 with additional disjoint variable conditions, not requiring ax-8 2110 nor df-clel 2809. (Contributed by BJ, 22-Sep-2024.) |
| Ref | Expression |
|---|---|
| raleqbidvv.1 | ⊢ (𝜑 → 𝐴 = 𝐵) |
| raleqbidvv.2 | ⊢ (𝜑 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| raleqbidvv | ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | raleqbidvv.1 | . 2 ⊢ (𝜑 → 𝐴 = 𝐵) | |
| 2 | raleqbidvv.2 | . . 3 ⊢ (𝜑 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) |
| 4 | 1, 3 | raleqbidva 3311 | 1 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 𝜓 ↔ ∀𝑥 ∈ 𝐵 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2108 ∀wral 3051 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-9 2118 ax-ext 2707 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-cleq 2727 df-ral 3052 df-rex 3061 |
| This theorem is referenced by: rexeqbidvvOLD 3316 raleqbi1dv 3317 gpg5nbgrvtx03star 48082 postcposALT 49445 |
| Copyright terms: Public domain | W3C validator |