Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximd2a | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
Ref | Expression |
---|---|
reximd2a.1 | ⊢ Ⅎ𝑥𝜑 |
reximd2a.2 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝑥 ∈ 𝐵) |
reximd2a.3 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
reximd2a.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
reximd2a | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximd2a.4 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | reximd2a.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | reximd2a.2 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝑥 ∈ 𝐵) | |
4 | reximd2a.3 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
5 | 3, 4 | jca 511 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒)) |
6 | 5 | expl 457 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
7 | 2, 6 | eximd 2212 | . . 3 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
8 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
9 | df-rex 3069 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
10 | 7, 8, 9 | 3imtr4g 295 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
11 | 1, 10 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∃wex 1783 Ⅎwnf 1787 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-rex 3069 |
This theorem is referenced by: locfinreflem 31692 |
Copyright terms: Public domain | W3C validator |