Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > reximd2a | Structured version Visualization version GIF version |
Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
Ref | Expression |
---|---|
reximd2a.1 | ⊢ Ⅎ𝑥𝜑 |
reximd2a.2 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝑥 ∈ 𝐵) |
reximd2a.3 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
reximd2a.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
reximd2a | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | reximd2a.4 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
2 | reximd2a.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
3 | reximd2a.2 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝑥 ∈ 𝐵) | |
4 | reximd2a.3 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
5 | 3, 4 | jca 512 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒)) |
6 | 5 | expl 458 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) |
7 | 2, 6 | eximd 2209 | . . 3 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) |
8 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
9 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
10 | 7, 8, 9 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) |
11 | 1, 10 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∃wex 1782 Ⅎwnf 1786 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-rex 3070 |
This theorem is referenced by: locfinreflem 31790 |
Copyright terms: Public domain | W3C validator |