|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > reximd2a | Structured version Visualization version GIF version | ||
| Description: Deduction quantifying both antecedent and consequent, based on Theorem 19.22 of [Margaris] p. 90. (Contributed by Thierry Arnoux, 27-Jan-2020.) | 
| Ref | Expression | 
|---|---|
| reximd2a.1 | ⊢ Ⅎ𝑥𝜑 | 
| reximd2a.2 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝑥 ∈ 𝐵) | 
| reximd2a.3 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | 
| reximd2a.4 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | 
| Ref | Expression | 
|---|---|
| reximd2a | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜒) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | reximd2a.4 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 2 | reximd2a.1 | . . . 4 ⊢ Ⅎ𝑥𝜑 | |
| 3 | reximd2a.2 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝑥 ∈ 𝐵) | |
| 4 | reximd2a.3 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 5 | 3, 4 | jca 511 | . . . . 5 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒)) | 
| 6 | 5 | expl 457 | . . . 4 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) → (𝑥 ∈ 𝐵 ∧ 𝜒))) | 
| 7 | 2, 6 | eximd 2215 | . . 3 ⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) → ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒))) | 
| 8 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 9 | df-rex 3070 | . . 3 ⊢ (∃𝑥 ∈ 𝐵 𝜒 ↔ ∃𝑥(𝑥 ∈ 𝐵 ∧ 𝜒)) | |
| 10 | 7, 8, 9 | 3imtr4g 296 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → ∃𝑥 ∈ 𝐵 𝜒)) | 
| 11 | 1, 10 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝜒) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∃wex 1778 Ⅎwnf 1782 ∈ wcel 2107 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-rex 3070 | 
| This theorem is referenced by: exsslsb 33648 locfinreflem 33840 | 
| Copyright terms: Public domain | W3C validator |