Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfinreflem Structured version   Visualization version   GIF version

Theorem locfinreflem 33823
Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020.)
Hypotheses
Ref Expression
locfinref.x 𝑋 = 𝐽
locfinref.1 (𝜑𝑈𝐽)
locfinref.2 (𝜑𝑋 = 𝑈)
locfinref.3 (𝜑𝑉𝐽)
locfinref.4 (𝜑𝑉Ref𝑈)
locfinref.5 (𝜑𝑉 ∈ (LocFin‘𝐽))
Assertion
Ref Expression
locfinreflem (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
Distinct variable groups:   𝑓,𝐽   𝑈,𝑓   𝑓,𝑉   𝜑,𝑓
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem locfinreflem
Dummy variables 𝑔 𝑗 𝑘 𝑢 𝑣 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfinref.4 . . . 4 (𝜑𝑉Ref𝑈)
2 locfinref.5 . . . . 5 (𝜑𝑉 ∈ (LocFin‘𝐽))
3 reff 33822 . . . . 5 (𝑉 ∈ (LocFin‘𝐽) → (𝑉Ref𝑈 ↔ ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))))
42, 3syl 17 . . . 4 (𝜑 → (𝑉Ref𝑈 ↔ ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))))
51, 4mpbid 232 . . 3 (𝜑 → ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))))
65simprd 495 . 2 (𝜑 → ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))
7 funmpt 6538 . . . . . 6 Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
87a1i 11 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
9 eqid 2729 . . . . . . 7 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
109dmmptss 6202 . . . . . 6 dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ ran 𝑔
11 frn 6677 . . . . . . 7 (𝑔:𝑉𝑈 → ran 𝑔𝑈)
1211ad2antlr 727 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran 𝑔𝑈)
1310, 12sstrid 3955 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈)
14 locfintop 23441 . . . . . . . . . 10 (𝑉 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
152, 14syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ Top)
1615ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → 𝐽 ∈ Top)
17 cnvimass 6042 . . . . . . . . . 10 (𝑔 “ {𝑢}) ⊆ dom 𝑔
18 fdm 6679 . . . . . . . . . . 11 (𝑔:𝑉𝑈 → dom 𝑔 = 𝑉)
1918ad3antlr 731 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → dom 𝑔 = 𝑉)
2017, 19sseqtrid 3986 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ⊆ 𝑉)
21 locfinref.3 . . . . . . . . . 10 (𝜑𝑉𝐽)
2221ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → 𝑉𝐽)
2320, 22sstrd 3954 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ⊆ 𝐽)
24 uniopn 22817 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑔 “ {𝑢}) ⊆ 𝐽) → (𝑔 “ {𝑢}) ∈ 𝐽)
2516, 23, 24syl2anc 584 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ∈ 𝐽)
2625ralrimiva 3125 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽)
279rnmptss 7077 . . . . . 6 (∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽 → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)
2826, 27syl 17 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)
29 eqid 2729 . . . . . . . . . 10 𝑉 = 𝑉
30 eqid 2729 . . . . . . . . . 10 𝑈 = 𝑈
3129, 30refbas 23430 . . . . . . . . 9 (𝑉Ref𝑈 𝑈 = 𝑉)
321, 31syl 17 . . . . . . . 8 (𝜑 𝑈 = 𝑉)
3332ad2antrr 726 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑈 = 𝑉)
34 nfv 1914 . . . . . . . . . . . . 13 𝑣(𝜑𝑔:𝑉𝑈)
35 nfra1 3259 . . . . . . . . . . . . 13 𝑣𝑣𝑉 𝑣 ⊆ (𝑔𝑣)
3634, 35nfan 1899 . . . . . . . . . . . 12 𝑣((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
37 nfre1 3260 . . . . . . . . . . . 12 𝑣𝑣𝑉 𝑥𝑣
3836, 37nfan 1899 . . . . . . . . . . 11 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣)
39 ffn 6670 . . . . . . . . . . . . . . 15 (𝑔:𝑉𝑈𝑔 Fn 𝑉)
4039ad4antlr 733 . . . . . . . . . . . . . 14 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑔 Fn 𝑉)
41 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑣𝑉)
42 fnfvelrn 7034 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑉𝑣𝑉) → (𝑔𝑣) ∈ ran 𝑔)
4340, 41, 42syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → (𝑔𝑣) ∈ ran 𝑔)
44 ssid 3966 . . . . . . . . . . . . . . 15 𝑣𝑣
4539ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑔 Fn 𝑉)
46 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑔𝑣) = (𝑔𝑣)
47 fniniseg 7014 . . . . . . . . . . . . . . . . . 18 (𝑔 Fn 𝑉 → (𝑣 ∈ (𝑔 “ {(𝑔𝑣)}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = (𝑔𝑣))))
4847biimpar 477 . . . . . . . . . . . . . . . . 17 ((𝑔 Fn 𝑉 ∧ (𝑣𝑉 ∧ (𝑔𝑣) = (𝑔𝑣))) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
4946, 48mpanr2 704 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝑉𝑣𝑉) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
5045, 49sylancom 588 . . . . . . . . . . . . . . 15 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
51 ssuni 4892 . . . . . . . . . . . . . . 15 ((𝑣𝑣𝑣 ∈ (𝑔 “ {(𝑔𝑣)})) → 𝑣 (𝑔 “ {(𝑔𝑣)}))
5244, 50, 51sylancr 587 . . . . . . . . . . . . . 14 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑣 (𝑔 “ {(𝑔𝑣)}))
5352sselda 3943 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑥 (𝑔 “ {(𝑔𝑣)}))
54 sneq 4595 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑔𝑣) → {𝑢} = {(𝑔𝑣)})
5554imaeq2d 6020 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑔𝑣) → (𝑔 “ {𝑢}) = (𝑔 “ {(𝑔𝑣)}))
5655unieqd 4880 . . . . . . . . . . . . . . 15 (𝑢 = (𝑔𝑣) → (𝑔 “ {𝑢}) = (𝑔 “ {(𝑔𝑣)}))
5756eleq2d 2814 . . . . . . . . . . . . . 14 (𝑢 = (𝑔𝑣) → (𝑥 (𝑔 “ {𝑢}) ↔ 𝑥 (𝑔 “ {(𝑔𝑣)})))
5857rspcev 3585 . . . . . . . . . . . . 13 (((𝑔𝑣) ∈ ran 𝑔𝑥 (𝑔 “ {(𝑔𝑣)})) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
5943, 53, 58syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
6059adantllr 719 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
61 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) → ∃𝑣𝑉 𝑥𝑣)
6238, 60, 61r19.29af 3244 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
63 nfv 1914 . . . . . . . . . . . . . 14 𝑣 𝑢 ∈ ran 𝑔
6436, 63nfan 1899 . . . . . . . . . . . . 13 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔)
65 nfv 1914 . . . . . . . . . . . . 13 𝑣 𝑥 (𝑔 “ {𝑢})
6664, 65nfan 1899 . . . . . . . . . . . 12 𝑣((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢}))
6720ad3antrrr 730 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → (𝑔 “ {𝑢}) ⊆ 𝑉)
68 simplr 768 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑣 ∈ (𝑔 “ {𝑢}))
6967, 68sseldd 3944 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑣𝑉)
70 simpr 484 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑥𝑣)
71 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → 𝑥 (𝑔 “ {𝑢}))
72 eluni2 4871 . . . . . . . . . . . . 13 (𝑥 (𝑔 “ {𝑢}) ↔ ∃𝑣 ∈ (𝑔 “ {𝑢})𝑥𝑣)
7371, 72sylib 218 . . . . . . . . . . . 12 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → ∃𝑣 ∈ (𝑔 “ {𝑢})𝑥𝑣)
7466, 69, 70, 73reximd2a 3245 . . . . . . . . . . 11 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → ∃𝑣𝑉 𝑥𝑣)
7574r19.29an 3137 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢})) → ∃𝑣𝑉 𝑥𝑣)
7662, 75impbida 800 . . . . . . . . 9 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (∃𝑣𝑉 𝑥𝑣 ↔ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢})))
77 eluni2 4871 . . . . . . . . 9 (𝑥 𝑉 ↔ ∃𝑣𝑉 𝑥𝑣)
78 eliun 4955 . . . . . . . . 9 (𝑥 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ↔ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
7976, 77, 783bitr4g 314 . . . . . . . 8 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (𝑥 𝑉𝑥 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8079eqrdv 2727 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑉 = 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
81 dfiun3g 5920 . . . . . . . 8 (∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8226, 81syl 17 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8333, 80, 823eqtrd 2768 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8411ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ran 𝑔𝑈)
85 vex 3448 . . . . . . . . . . 11 𝑤 ∈ V
869elrnmpt 5911 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ↔ ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢})))
8785, 86mp1i 13 . . . . . . . . . 10 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ↔ ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢})))
8887biimpa 476 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢}))
89 ssrexv 4013 . . . . . . . . 9 (ran 𝑔𝑈 → (∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢}) → ∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢})))
9084, 88, 89sylc 65 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢}))
91 nfv 1914 . . . . . . . . . 10 𝑢((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
92 nfmpt1 5201 . . . . . . . . . . . 12 𝑢(𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9392nfrn 5905 . . . . . . . . . . 11 𝑢ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9493nfcri 2883 . . . . . . . . . 10 𝑢 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9591, 94nfan 1899 . . . . . . . . 9 𝑢(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
96 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑤 = (𝑔 “ {𝑢}))
97 nfv 1914 . . . . . . . . . . . . . . . 16 𝑣 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9836, 97nfan 1899 . . . . . . . . . . . . . . 15 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
99 nfv 1914 . . . . . . . . . . . . . . 15 𝑣 𝑢𝑈
10098, 99nfan 1899 . . . . . . . . . . . . . 14 𝑣((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈)
101 nfv 1914 . . . . . . . . . . . . . 14 𝑣 𝑤 = (𝑔 “ {𝑢})
102100, 101nfan 1899 . . . . . . . . . . . . 13 𝑣(((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢}))
103 simp-5r 785 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
10439ad5antlr 735 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑔 Fn 𝑉)
105 fniniseg 7014 . . . . . . . . . . . . . . . . . . 19 (𝑔 Fn 𝑉 → (𝑣 ∈ (𝑔 “ {𝑢}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢)))
106104, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑣 ∈ (𝑔 “ {𝑢}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢)))
107106biimpa 476 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢))
108107simpld 494 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣𝑉)
109 rspa 3224 . . . . . . . . . . . . . . . 16 ((∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣) ∧ 𝑣𝑉) → 𝑣 ⊆ (𝑔𝑣))
110103, 108, 109syl2anc 584 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣 ⊆ (𝑔𝑣))
111107simprd 495 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → (𝑔𝑣) = 𝑢)
112110, 111sseqtrd 3980 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣𝑢)
113112ex 412 . . . . . . . . . . . . 13 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑣 ∈ (𝑔 “ {𝑢}) → 𝑣𝑢))
114102, 113ralrimi 3233 . . . . . . . . . . . 12 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → ∀𝑣 ∈ (𝑔 “ {𝑢})𝑣𝑢)
115 unissb 4899 . . . . . . . . . . . 12 ( (𝑔 “ {𝑢}) ⊆ 𝑢 ↔ ∀𝑣 ∈ (𝑔 “ {𝑢})𝑣𝑢)
116114, 115sylibr 234 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑔 “ {𝑢}) ⊆ 𝑢)
11796, 116eqsstrd 3978 . . . . . . . . . 10 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑤𝑢)
118117exp31 419 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → (𝑢𝑈 → (𝑤 = (𝑔 “ {𝑢}) → 𝑤𝑢)))
11995, 118reximdai 3237 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → (∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢}) → ∃𝑢𝑈 𝑤𝑢))
12090, 119mpd 15 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢𝑈 𝑤𝑢)
121120ralrimiva 3125 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)
122 vex 3448 . . . . . . . . . 10 𝑔 ∈ V
123122rnex 7866 . . . . . . . . 9 ran 𝑔 ∈ V
124123mptex 7179 . . . . . . . 8 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V
125 rnexg 7858 . . . . . . . 8 ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V)
126124, 125mp1i 13 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V)
127 eqid 2729 . . . . . . . 8 ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
128127, 30isref 23429 . . . . . . 7 (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V → (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ↔ ( 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)))
129126, 128syl 17 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ↔ ( 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)))
13083, 121, 129mpbir2and 713 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈)
13115ad2antrr 726 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝐽 ∈ Top)
132 locfinref.2 . . . . . . . 8 (𝜑𝑋 = 𝑈)
133132ad2antrr 726 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑋 = 𝑈)
134133, 83eqtrd 2764 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑋 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
135 nfv 1914 . . . . . . . . 9 𝑣 𝑥𝑋
13636, 135nfan 1899 . . . . . . . 8 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋)
137 simplr 768 . . . . . . . 8 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)) → 𝑣𝐽)
138 ffun 6673 . . . . . . . . . . . . . 14 (𝑔:𝑉𝑈 → Fun 𝑔)
139138ad6antlr 737 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → Fun 𝑔)
140 imafi 9240 . . . . . . . . . . . . 13 ((Fun 𝑔 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin)
141139, 140sylancom 588 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin)
142 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → 𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘))
143 sneq 4595 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑘 → {𝑢} = {𝑘})
144143imaeq2d 6020 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑘 → (𝑔 “ {𝑢}) = (𝑔 “ {𝑘}))
145144unieqd 4880 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑘 (𝑔 “ {𝑢}) = (𝑔 “ {𝑘}))
146122cnvex 7881 . . . . . . . . . . . . . . . . . . . . . . 23 𝑔 ∈ V
147 imaexg 7869 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 ∈ V → (𝑔 “ {𝑘}) ∈ V)
148146, 147ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 “ {𝑘}) ∈ V
149148uniex 7697 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 “ {𝑘}) ∈ V
150145, 9, 149fvmpt 6950 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ran 𝑔 → ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘) = (𝑔 “ {𝑘}))
1511503ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘) = (𝑔 “ {𝑘}))
152142, 151eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → 𝑤 = (𝑔 “ {𝑘}))
153152ineq1d 4178 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → (𝑤𝑣) = ( (𝑔 “ {𝑘}) ∩ 𝑣))
154153neeq1d 2984 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → ((𝑤𝑣) ≠ ∅ ↔ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅))
155123a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → ran 𝑔 ∈ V)
156 imaexg 7869 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 ∈ V → (𝑔 “ {𝑢}) ∈ V)
157146, 156ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑔 “ {𝑢}) ∈ V
158157uniex 7697 . . . . . . . . . . . . . . . . . . 19 (𝑔 “ {𝑢}) ∈ V
159158, 9fnmpti 6643 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) Fn ran 𝑔
160 dffn4 6760 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) Fn ran 𝑔 ↔ (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
161159, 160mpbi 230 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
162161a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
163154, 155, 162rabfodom 32484 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑘 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅})
164 sneq 4595 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑢 → {𝑘} = {𝑢})
165164imaeq2d 6020 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → (𝑔 “ {𝑘}) = (𝑔 “ {𝑢}))
166165unieqd 4880 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 (𝑔 “ {𝑘}) = (𝑔 “ {𝑢}))
167166ineq1d 4178 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑢 → ( (𝑔 “ {𝑘}) ∩ 𝑣) = ( (𝑔 “ {𝑢}) ∩ 𝑣))
168167neeq1d 2984 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑢 → (( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅ ↔ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅))
169168cbvrabv 3413 . . . . . . . . . . . . . . 15 {𝑘 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅} = {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅}
170163, 169breqtrdi 5143 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅})
171123rabex 5289 . . . . . . . . . . . . . . 15 {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} ∈ V
172 nfv 1914 . . . . . . . . . . . . . . . . . . . . 21 𝑗(((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣)
173 nfrab1 3423 . . . . . . . . . . . . . . . . . . . . . 22 𝑗{𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}
174173nfel1 2908 . . . . . . . . . . . . . . . . . . . . 21 𝑗{𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin
175172, 174nfan 1899 . . . . . . . . . . . . . . . . . . . 20 𝑗((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)
176 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑢 ∈ ran 𝑔
177175, 176nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑗(((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔)
178 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑗( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅
179177, 178nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑗((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅)
180 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑗(𝑔𝑘) = 𝑢
181173, 180nfrexw 3284 . . . . . . . . . . . . . . . . . 18 𝑗𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢
18239ad5antlr 735 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) → 𝑔 Fn 𝑉)
183182ad5antr 734 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑔 Fn 𝑉)
184 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗 ∈ (𝑔 “ {𝑢}))
185 fniniseg 7014 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 Fn 𝑉 → (𝑗 ∈ (𝑔 “ {𝑢}) ↔ (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢)))
186185biimpa 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 Fn 𝑉𝑗 ∈ (𝑔 “ {𝑢})) → (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢))
187183, 184, 186syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢))
188187simpld 494 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗𝑉)
189 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑗𝑣) ≠ ∅)
190 rabid 3424 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ↔ (𝑗𝑉 ∧ (𝑗𝑣) ≠ ∅))
191188, 189, 190sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅})
192187simprd 495 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑔𝑗) = 𝑢)
193 fveqeq2 6849 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → ((𝑔𝑘) = 𝑢 ↔ (𝑔𝑗) = 𝑢))
194193rspcev 3585 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∧ (𝑔𝑗) = 𝑢) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
195191, 192, 194syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
196 uniinn0 32529 . . . . . . . . . . . . . . . . . . . 20 (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ ↔ ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
197196biimpi 216 . . . . . . . . . . . . . . . . . . 19 (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ → ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
198197adantl 481 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) → ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
199179, 181, 195, 198r19.29af2 3243 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
200199ex 412 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) → (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢))
201200ss2rabdv 4035 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ⊆ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
202 ssdomg 8948 . . . . . . . . . . . . . . 15 ({𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} ∈ V → ({𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ⊆ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢}))
203171, 201, 202mpsyl 68 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
204 domtr 8955 . . . . . . . . . . . . . 14 (({𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ∧ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢}) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
205170, 203, 204syl2anc 584 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
206182adantr 480 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → 𝑔 Fn 𝑉)
207 dffn3 6682 . . . . . . . . . . . . . . 15 (𝑔 Fn 𝑉𝑔:𝑉⟶ran 𝑔)
208207biimpi 216 . . . . . . . . . . . . . 14 (𝑔 Fn 𝑉𝑔:𝑉⟶ran 𝑔)
209 ssrab2 4039 . . . . . . . . . . . . . . 15 {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ⊆ 𝑉
210 fimarab 6917 . . . . . . . . . . . . . . 15 ((𝑔:𝑉⟶ran 𝑔 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ⊆ 𝑉) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
211209, 210mpan2 691 . . . . . . . . . . . . . 14 (𝑔:𝑉⟶ran 𝑔 → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
212206, 208, 2113syl 18 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
213205, 212breqtrrd 5130 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}))
214 domfi 9130 . . . . . . . . . . . 12 (((𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅})) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)
215141, 213, 214syl2anc 584 . . . . . . . . . . 11 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)
216215ex 412 . . . . . . . . . 10 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) → ({𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
217216imdistanda 571 . . . . . . . . 9 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) → ((𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)))
218217imp 406 . . . . . . . 8 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)) → (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
219 simplll 774 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → 𝜑)
220 locfinref.x . . . . . . . . . . . . 13 𝑋 = 𝐽
221220, 29islocfin 23437 . . . . . . . . . . . 12 (𝑉 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑉 ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)))
2222, 221sylib 218 . . . . . . . . . . 11 (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = 𝑉 ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)))
223222simp3d 1144 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
224223r19.21bi 3227 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
225219, 224sylancom 588 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
226136, 137, 218, 225reximd2a 3245 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
227226ralrimiva 3125 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
228220, 127islocfin 23437 . . . . . 6 (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)))
229131, 134, 227, 228syl3anbrc 1344 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))
230 funeq 6520 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (Fun 𝑓 ↔ Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))))
231 dmeq 5857 . . . . . . . . 9 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → dom 𝑓 = dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
232231sseq1d 3975 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (dom 𝑓𝑈 ↔ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈))
233 rneq 5889 . . . . . . . . 9 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ran 𝑓 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
234233sseq1d 3975 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓𝐽 ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽))
235230, 232, 2343anbi123d 1438 . . . . . . 7 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ↔ (Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)))
236233breq1d 5112 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓Ref𝑈 ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈))
237233eleq1d 2813 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓 ∈ (LocFin‘𝐽) ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽)))
238236, 237anbi12d 632 . . . . . . 7 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ((ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)) ↔ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))))
239235, 238anbi12d 632 . . . . . 6 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) ↔ ((Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽) ∧ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽)))))
240124, 239spcev 3569 . . . . 5 (((Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽) ∧ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
2418, 13, 28, 130, 229, 240syl32anc 1380 . . . 4 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
242241expl 457 . . 3 (𝜑 → ((𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))))
243242exlimdv 1933 . 2 (𝜑 → (∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))))
2446, 243mpd 15 1 (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3402  Vcvv 3444  cin 3910  wss 3911  c0 4292  {csn 4585   cuni 4867   ciun 4951   class class class wbr 5102  cmpt 5183  ccnv 5630  dom cdm 5631  ran crn 5632  cima 5634  Fun wfun 6493   Fn wfn 6494  wf 6495  ontowfo 6497  cfv 6499  cdom 8893  Fincfn 8895  Topctop 22813  Refcref 23422  LocFinclocfin 23424
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-reg 9521  ax-inf2 9570  ax-ac2 10392
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-iin 4954  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-isom 6508  df-riota 7326  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-fin 8899  df-r1 9693  df-rank 9694  df-card 9868  df-ac 10045  df-top 22814  df-ref 23425  df-locfin 23427
This theorem is referenced by:  locfinref  33824
  Copyright terms: Public domain W3C validator