Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfinreflem Structured version   Visualization version   GIF version

Theorem locfinreflem 33786
Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020.)
Hypotheses
Ref Expression
locfinref.x 𝑋 = 𝐽
locfinref.1 (𝜑𝑈𝐽)
locfinref.2 (𝜑𝑋 = 𝑈)
locfinref.3 (𝜑𝑉𝐽)
locfinref.4 (𝜑𝑉Ref𝑈)
locfinref.5 (𝜑𝑉 ∈ (LocFin‘𝐽))
Assertion
Ref Expression
locfinreflem (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
Distinct variable groups:   𝑓,𝐽   𝑈,𝑓   𝑓,𝑉   𝜑,𝑓
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem locfinreflem
Dummy variables 𝑔 𝑗 𝑘 𝑢 𝑣 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfinref.4 . . . 4 (𝜑𝑉Ref𝑈)
2 locfinref.5 . . . . 5 (𝜑𝑉 ∈ (LocFin‘𝐽))
3 reff 33785 . . . . 5 (𝑉 ∈ (LocFin‘𝐽) → (𝑉Ref𝑈 ↔ ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))))
42, 3syl 17 . . . 4 (𝜑 → (𝑉Ref𝑈 ↔ ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))))
51, 4mpbid 232 . . 3 (𝜑 → ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))))
65simprd 495 . 2 (𝜑 → ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))
7 funmpt 6616 . . . . . 6 Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
87a1i 11 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
9 eqid 2740 . . . . . . 7 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
109dmmptss 6272 . . . . . 6 dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ ran 𝑔
11 frn 6754 . . . . . . 7 (𝑔:𝑉𝑈 → ran 𝑔𝑈)
1211ad2antlr 726 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran 𝑔𝑈)
1310, 12sstrid 4020 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈)
14 locfintop 23550 . . . . . . . . . 10 (𝑉 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
152, 14syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ Top)
1615ad3antrrr 729 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → 𝐽 ∈ Top)
17 cnvimass 6111 . . . . . . . . . 10 (𝑔 “ {𝑢}) ⊆ dom 𝑔
18 fdm 6756 . . . . . . . . . . 11 (𝑔:𝑉𝑈 → dom 𝑔 = 𝑉)
1918ad3antlr 730 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → dom 𝑔 = 𝑉)
2017, 19sseqtrid 4061 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ⊆ 𝑉)
21 locfinref.3 . . . . . . . . . 10 (𝜑𝑉𝐽)
2221ad3antrrr 729 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → 𝑉𝐽)
2320, 22sstrd 4019 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ⊆ 𝐽)
24 uniopn 22924 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑔 “ {𝑢}) ⊆ 𝐽) → (𝑔 “ {𝑢}) ∈ 𝐽)
2516, 23, 24syl2anc 583 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ∈ 𝐽)
2625ralrimiva 3152 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽)
279rnmptss 7157 . . . . . 6 (∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽 → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)
2826, 27syl 17 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)
29 eqid 2740 . . . . . . . . . 10 𝑉 = 𝑉
30 eqid 2740 . . . . . . . . . 10 𝑈 = 𝑈
3129, 30refbas 23539 . . . . . . . . 9 (𝑉Ref𝑈 𝑈 = 𝑉)
321, 31syl 17 . . . . . . . 8 (𝜑 𝑈 = 𝑉)
3332ad2antrr 725 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑈 = 𝑉)
34 nfv 1913 . . . . . . . . . . . . 13 𝑣(𝜑𝑔:𝑉𝑈)
35 nfra1 3290 . . . . . . . . . . . . 13 𝑣𝑣𝑉 𝑣 ⊆ (𝑔𝑣)
3634, 35nfan 1898 . . . . . . . . . . . 12 𝑣((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
37 nfre1 3291 . . . . . . . . . . . 12 𝑣𝑣𝑉 𝑥𝑣
3836, 37nfan 1898 . . . . . . . . . . 11 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣)
39 ffn 6747 . . . . . . . . . . . . . . 15 (𝑔:𝑉𝑈𝑔 Fn 𝑉)
4039ad4antlr 732 . . . . . . . . . . . . . 14 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑔 Fn 𝑉)
41 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑣𝑉)
42 fnfvelrn 7114 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑉𝑣𝑉) → (𝑔𝑣) ∈ ran 𝑔)
4340, 41, 42syl2anc 583 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → (𝑔𝑣) ∈ ran 𝑔)
44 ssid 4031 . . . . . . . . . . . . . . 15 𝑣𝑣
4539ad3antlr 730 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑔 Fn 𝑉)
46 eqid 2740 . . . . . . . . . . . . . . . . 17 (𝑔𝑣) = (𝑔𝑣)
47 fniniseg 7093 . . . . . . . . . . . . . . . . . 18 (𝑔 Fn 𝑉 → (𝑣 ∈ (𝑔 “ {(𝑔𝑣)}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = (𝑔𝑣))))
4847biimpar 477 . . . . . . . . . . . . . . . . 17 ((𝑔 Fn 𝑉 ∧ (𝑣𝑉 ∧ (𝑔𝑣) = (𝑔𝑣))) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
4946, 48mpanr2 703 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝑉𝑣𝑉) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
5045, 49sylancom 587 . . . . . . . . . . . . . . 15 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
51 ssuni 4956 . . . . . . . . . . . . . . 15 ((𝑣𝑣𝑣 ∈ (𝑔 “ {(𝑔𝑣)})) → 𝑣 (𝑔 “ {(𝑔𝑣)}))
5244, 50, 51sylancr 586 . . . . . . . . . . . . . 14 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑣 (𝑔 “ {(𝑔𝑣)}))
5352sselda 4008 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑥 (𝑔 “ {(𝑔𝑣)}))
54 sneq 4658 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑔𝑣) → {𝑢} = {(𝑔𝑣)})
5554imaeq2d 6089 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑔𝑣) → (𝑔 “ {𝑢}) = (𝑔 “ {(𝑔𝑣)}))
5655unieqd 4944 . . . . . . . . . . . . . . 15 (𝑢 = (𝑔𝑣) → (𝑔 “ {𝑢}) = (𝑔 “ {(𝑔𝑣)}))
5756eleq2d 2830 . . . . . . . . . . . . . 14 (𝑢 = (𝑔𝑣) → (𝑥 (𝑔 “ {𝑢}) ↔ 𝑥 (𝑔 “ {(𝑔𝑣)})))
5857rspcev 3635 . . . . . . . . . . . . 13 (((𝑔𝑣) ∈ ran 𝑔𝑥 (𝑔 “ {(𝑔𝑣)})) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
5943, 53, 58syl2anc 583 . . . . . . . . . . . 12 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
6059adantllr 718 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
61 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) → ∃𝑣𝑉 𝑥𝑣)
6238, 60, 61r19.29af 3274 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
63 nfv 1913 . . . . . . . . . . . . . 14 𝑣 𝑢 ∈ ran 𝑔
6436, 63nfan 1898 . . . . . . . . . . . . 13 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔)
65 nfv 1913 . . . . . . . . . . . . 13 𝑣 𝑥 (𝑔 “ {𝑢})
6664, 65nfan 1898 . . . . . . . . . . . 12 𝑣((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢}))
6720ad3antrrr 729 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → (𝑔 “ {𝑢}) ⊆ 𝑉)
68 simplr 768 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑣 ∈ (𝑔 “ {𝑢}))
6967, 68sseldd 4009 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑣𝑉)
70 simpr 484 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑥𝑣)
71 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → 𝑥 (𝑔 “ {𝑢}))
72 eluni2 4935 . . . . . . . . . . . . 13 (𝑥 (𝑔 “ {𝑢}) ↔ ∃𝑣 ∈ (𝑔 “ {𝑢})𝑥𝑣)
7371, 72sylib 218 . . . . . . . . . . . 12 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → ∃𝑣 ∈ (𝑔 “ {𝑢})𝑥𝑣)
7466, 69, 70, 73reximd2a 3275 . . . . . . . . . . 11 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → ∃𝑣𝑉 𝑥𝑣)
7574r19.29an 3164 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢})) → ∃𝑣𝑉 𝑥𝑣)
7662, 75impbida 800 . . . . . . . . 9 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (∃𝑣𝑉 𝑥𝑣 ↔ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢})))
77 eluni2 4935 . . . . . . . . 9 (𝑥 𝑉 ↔ ∃𝑣𝑉 𝑥𝑣)
78 eliun 5019 . . . . . . . . 9 (𝑥 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ↔ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
7976, 77, 783bitr4g 314 . . . . . . . 8 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (𝑥 𝑉𝑥 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8079eqrdv 2738 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑉 = 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
81 dfiun3g 5990 . . . . . . . 8 (∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8226, 81syl 17 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8333, 80, 823eqtrd 2784 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8411ad3antlr 730 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ran 𝑔𝑈)
85 vex 3492 . . . . . . . . . . 11 𝑤 ∈ V
869elrnmpt 5981 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ↔ ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢})))
8785, 86mp1i 13 . . . . . . . . . 10 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ↔ ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢})))
8887biimpa 476 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢}))
89 ssrexv 4078 . . . . . . . . 9 (ran 𝑔𝑈 → (∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢}) → ∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢})))
9084, 88, 89sylc 65 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢}))
91 nfv 1913 . . . . . . . . . 10 𝑢((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
92 nfmpt1 5274 . . . . . . . . . . . 12 𝑢(𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9392nfrn 5977 . . . . . . . . . . 11 𝑢ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9493nfcri 2900 . . . . . . . . . 10 𝑢 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9591, 94nfan 1898 . . . . . . . . 9 𝑢(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
96 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑤 = (𝑔 “ {𝑢}))
97 nfv 1913 . . . . . . . . . . . . . . . 16 𝑣 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9836, 97nfan 1898 . . . . . . . . . . . . . . 15 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
99 nfv 1913 . . . . . . . . . . . . . . 15 𝑣 𝑢𝑈
10098, 99nfan 1898 . . . . . . . . . . . . . 14 𝑣((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈)
101 nfv 1913 . . . . . . . . . . . . . 14 𝑣 𝑤 = (𝑔 “ {𝑢})
102100, 101nfan 1898 . . . . . . . . . . . . 13 𝑣(((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢}))
103 simp-5r 785 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
10439ad5antlr 734 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑔 Fn 𝑉)
105 fniniseg 7093 . . . . . . . . . . . . . . . . . . 19 (𝑔 Fn 𝑉 → (𝑣 ∈ (𝑔 “ {𝑢}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢)))
106104, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑣 ∈ (𝑔 “ {𝑢}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢)))
107106biimpa 476 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢))
108107simpld 494 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣𝑉)
109 rspa 3254 . . . . . . . . . . . . . . . 16 ((∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣) ∧ 𝑣𝑉) → 𝑣 ⊆ (𝑔𝑣))
110103, 108, 109syl2anc 583 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣 ⊆ (𝑔𝑣))
111107simprd 495 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → (𝑔𝑣) = 𝑢)
112110, 111sseqtrd 4049 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣𝑢)
113112ex 412 . . . . . . . . . . . . 13 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑣 ∈ (𝑔 “ {𝑢}) → 𝑣𝑢))
114102, 113ralrimi 3263 . . . . . . . . . . . 12 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → ∀𝑣 ∈ (𝑔 “ {𝑢})𝑣𝑢)
115 unissb 4963 . . . . . . . . . . . 12 ( (𝑔 “ {𝑢}) ⊆ 𝑢 ↔ ∀𝑣 ∈ (𝑔 “ {𝑢})𝑣𝑢)
116114, 115sylibr 234 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑔 “ {𝑢}) ⊆ 𝑢)
11796, 116eqsstrd 4047 . . . . . . . . . 10 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑤𝑢)
118117exp31 419 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → (𝑢𝑈 → (𝑤 = (𝑔 “ {𝑢}) → 𝑤𝑢)))
11995, 118reximdai 3267 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → (∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢}) → ∃𝑢𝑈 𝑤𝑢))
12090, 119mpd 15 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢𝑈 𝑤𝑢)
121120ralrimiva 3152 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)
122 vex 3492 . . . . . . . . . 10 𝑔 ∈ V
123122rnex 7950 . . . . . . . . 9 ran 𝑔 ∈ V
124123mptex 7260 . . . . . . . 8 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V
125 rnexg 7942 . . . . . . . 8 ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V)
126124, 125mp1i 13 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V)
127 eqid 2740 . . . . . . . 8 ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
128127, 30isref 23538 . . . . . . 7 (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V → (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ↔ ( 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)))
129126, 128syl 17 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ↔ ( 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)))
13083, 121, 129mpbir2and 712 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈)
13115ad2antrr 725 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝐽 ∈ Top)
132 locfinref.2 . . . . . . . 8 (𝜑𝑋 = 𝑈)
133132ad2antrr 725 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑋 = 𝑈)
134133, 83eqtrd 2780 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑋 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
135 nfv 1913 . . . . . . . . 9 𝑣 𝑥𝑋
13636, 135nfan 1898 . . . . . . . 8 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋)
137 simplr 768 . . . . . . . 8 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)) → 𝑣𝐽)
138 ffun 6750 . . . . . . . . . . . . . 14 (𝑔:𝑉𝑈 → Fun 𝑔)
139138ad6antlr 736 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → Fun 𝑔)
140 imafi 9381 . . . . . . . . . . . . 13 ((Fun 𝑔 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin)
141139, 140sylancom 587 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin)
142 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → 𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘))
143 sneq 4658 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑘 → {𝑢} = {𝑘})
144143imaeq2d 6089 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑘 → (𝑔 “ {𝑢}) = (𝑔 “ {𝑘}))
145144unieqd 4944 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑘 (𝑔 “ {𝑢}) = (𝑔 “ {𝑘}))
146122cnvex 7965 . . . . . . . . . . . . . . . . . . . . . . 23 𝑔 ∈ V
147 imaexg 7953 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 ∈ V → (𝑔 “ {𝑘}) ∈ V)
148146, 147ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 “ {𝑘}) ∈ V
149148uniex 7776 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 “ {𝑘}) ∈ V
150145, 9, 149fvmpt 7029 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ran 𝑔 → ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘) = (𝑔 “ {𝑘}))
1511503ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘) = (𝑔 “ {𝑘}))
152142, 151eqtrd 2780 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → 𝑤 = (𝑔 “ {𝑘}))
153152ineq1d 4240 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → (𝑤𝑣) = ( (𝑔 “ {𝑘}) ∩ 𝑣))
154153neeq1d 3006 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → ((𝑤𝑣) ≠ ∅ ↔ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅))
155123a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → ran 𝑔 ∈ V)
156 imaexg 7953 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 ∈ V → (𝑔 “ {𝑢}) ∈ V)
157146, 156ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑔 “ {𝑢}) ∈ V
158157uniex 7776 . . . . . . . . . . . . . . . . . . 19 (𝑔 “ {𝑢}) ∈ V
159158, 9fnmpti 6723 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) Fn ran 𝑔
160 dffn4 6840 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) Fn ran 𝑔 ↔ (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
161159, 160mpbi 230 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
162161a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
163154, 155, 162rabfodom 32533 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑘 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅})
164 sneq 4658 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑢 → {𝑘} = {𝑢})
165164imaeq2d 6089 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → (𝑔 “ {𝑘}) = (𝑔 “ {𝑢}))
166165unieqd 4944 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 (𝑔 “ {𝑘}) = (𝑔 “ {𝑢}))
167166ineq1d 4240 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑢 → ( (𝑔 “ {𝑘}) ∩ 𝑣) = ( (𝑔 “ {𝑢}) ∩ 𝑣))
168167neeq1d 3006 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑢 → (( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅ ↔ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅))
169168cbvrabv 3454 . . . . . . . . . . . . . . 15 {𝑘 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅} = {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅}
170163, 169breqtrdi 5207 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅})
171123rabex 5357 . . . . . . . . . . . . . . 15 {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} ∈ V
172 nfv 1913 . . . . . . . . . . . . . . . . . . . . 21 𝑗(((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣)
173 nfrab1 3464 . . . . . . . . . . . . . . . . . . . . . 22 𝑗{𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}
174173nfel1 2925 . . . . . . . . . . . . . . . . . . . . 21 𝑗{𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin
175172, 174nfan 1898 . . . . . . . . . . . . . . . . . . . 20 𝑗((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)
176 nfv 1913 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑢 ∈ ran 𝑔
177175, 176nfan 1898 . . . . . . . . . . . . . . . . . . 19 𝑗(((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔)
178 nfv 1913 . . . . . . . . . . . . . . . . . . 19 𝑗( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅
179177, 178nfan 1898 . . . . . . . . . . . . . . . . . 18 𝑗((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅)
180 nfv 1913 . . . . . . . . . . . . . . . . . . 19 𝑗(𝑔𝑘) = 𝑢
181173, 180nfrexw 3319 . . . . . . . . . . . . . . . . . 18 𝑗𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢
18239ad5antlr 734 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) → 𝑔 Fn 𝑉)
183182ad5antr 733 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑔 Fn 𝑉)
184 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗 ∈ (𝑔 “ {𝑢}))
185 fniniseg 7093 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 Fn 𝑉 → (𝑗 ∈ (𝑔 “ {𝑢}) ↔ (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢)))
186185biimpa 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 Fn 𝑉𝑗 ∈ (𝑔 “ {𝑢})) → (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢))
187183, 184, 186syl2anc 583 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢))
188187simpld 494 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗𝑉)
189 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑗𝑣) ≠ ∅)
190 rabid 3465 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ↔ (𝑗𝑉 ∧ (𝑗𝑣) ≠ ∅))
191188, 189, 190sylanbrc 582 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅})
192187simprd 495 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑔𝑗) = 𝑢)
193 fveqeq2 6929 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → ((𝑔𝑘) = 𝑢 ↔ (𝑔𝑗) = 𝑢))
194193rspcev 3635 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∧ (𝑔𝑗) = 𝑢) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
195191, 192, 194syl2anc 583 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
196 uniinn0 32573 . . . . . . . . . . . . . . . . . . . 20 (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ ↔ ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
197196biimpi 216 . . . . . . . . . . . . . . . . . . 19 (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ → ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
198197adantl 481 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) → ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
199179, 181, 195, 198r19.29af2 3273 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
200199ex 412 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) → (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢))
201200ss2rabdv 4099 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ⊆ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
202 ssdomg 9060 . . . . . . . . . . . . . . 15 ({𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} ∈ V → ({𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ⊆ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢}))
203171, 201, 202mpsyl 68 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
204 domtr 9067 . . . . . . . . . . . . . 14 (({𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ∧ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢}) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
205170, 203, 204syl2anc 583 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
206182adantr 480 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → 𝑔 Fn 𝑉)
207 dffn3 6759 . . . . . . . . . . . . . . 15 (𝑔 Fn 𝑉𝑔:𝑉⟶ran 𝑔)
208207biimpi 216 . . . . . . . . . . . . . 14 (𝑔 Fn 𝑉𝑔:𝑉⟶ran 𝑔)
209 ssrab2 4103 . . . . . . . . . . . . . . 15 {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ⊆ 𝑉
210 fimarab 6996 . . . . . . . . . . . . . . 15 ((𝑔:𝑉⟶ran 𝑔 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ⊆ 𝑉) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
211209, 210mpan2 690 . . . . . . . . . . . . . 14 (𝑔:𝑉⟶ran 𝑔 → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
212206, 208, 2113syl 18 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
213205, 212breqtrrd 5194 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}))
214 domfi 9255 . . . . . . . . . . . 12 (((𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅})) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)
215141, 213, 214syl2anc 583 . . . . . . . . . . 11 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)
216215ex 412 . . . . . . . . . 10 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) → ({𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
217216imdistanda 571 . . . . . . . . 9 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) → ((𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)))
218217imp 406 . . . . . . . 8 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)) → (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
219 simplll 774 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → 𝜑)
220 locfinref.x . . . . . . . . . . . . 13 𝑋 = 𝐽
221220, 29islocfin 23546 . . . . . . . . . . . 12 (𝑉 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑉 ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)))
2222, 221sylib 218 . . . . . . . . . . 11 (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = 𝑉 ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)))
223222simp3d 1144 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
224223r19.21bi 3257 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
225219, 224sylancom 587 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
226136, 137, 218, 225reximd2a 3275 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
227226ralrimiva 3152 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
228220, 127islocfin 23546 . . . . . 6 (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)))
229131, 134, 227, 228syl3anbrc 1343 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))
230 funeq 6598 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (Fun 𝑓 ↔ Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))))
231 dmeq 5928 . . . . . . . . 9 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → dom 𝑓 = dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
232231sseq1d 4040 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (dom 𝑓𝑈 ↔ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈))
233 rneq 5961 . . . . . . . . 9 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ran 𝑓 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
234233sseq1d 4040 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓𝐽 ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽))
235230, 232, 2343anbi123d 1436 . . . . . . 7 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ↔ (Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)))
236233breq1d 5176 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓Ref𝑈 ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈))
237233eleq1d 2829 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓 ∈ (LocFin‘𝐽) ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽)))
238236, 237anbi12d 631 . . . . . . 7 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ((ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)) ↔ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))))
239235, 238anbi12d 631 . . . . . 6 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) ↔ ((Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽) ∧ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽)))))
240124, 239spcev 3619 . . . . 5 (((Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽) ∧ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
2418, 13, 28, 130, 229, 240syl32anc 1378 . . . 4 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
242241expl 457 . . 3 (𝜑 → ((𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))))
243242exlimdv 1932 . 2 (𝜑 → (∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))))
2446, 243mpd 15 1 (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  wne 2946  wral 3067  wrex 3076  {crab 3443  Vcvv 3488  cin 3975  wss 3976  c0 4352  {csn 4648   cuni 4931   ciun 5015   class class class wbr 5166  cmpt 5249  ccnv 5699  dom cdm 5700  ran crn 5701  cima 5703  Fun wfun 6567   Fn wfn 6568  wf 6569  ontowfo 6571  cfv 6573  cdom 9001  Fincfn 9003  Topctop 22920  Refcref 23531  LocFinclocfin 23533
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-reg 9661  ax-inf2 9710  ax-ac2 10532
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-iin 5018  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-se 5653  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-isom 6582  df-riota 7404  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-fin 9007  df-r1 9833  df-rank 9834  df-card 10008  df-ac 10185  df-top 22921  df-ref 23534  df-locfin 23536
This theorem is referenced by:  locfinref  33787
  Copyright terms: Public domain W3C validator