Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfinreflem Structured version   Visualization version   GIF version

Theorem locfinreflem 33813
Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020.)
Hypotheses
Ref Expression
locfinref.x 𝑋 = 𝐽
locfinref.1 (𝜑𝑈𝐽)
locfinref.2 (𝜑𝑋 = 𝑈)
locfinref.3 (𝜑𝑉𝐽)
locfinref.4 (𝜑𝑉Ref𝑈)
locfinref.5 (𝜑𝑉 ∈ (LocFin‘𝐽))
Assertion
Ref Expression
locfinreflem (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
Distinct variable groups:   𝑓,𝐽   𝑈,𝑓   𝑓,𝑉   𝜑,𝑓
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem locfinreflem
Dummy variables 𝑔 𝑗 𝑘 𝑢 𝑣 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfinref.4 . . . 4 (𝜑𝑉Ref𝑈)
2 locfinref.5 . . . . 5 (𝜑𝑉 ∈ (LocFin‘𝐽))
3 reff 33812 . . . . 5 (𝑉 ∈ (LocFin‘𝐽) → (𝑉Ref𝑈 ↔ ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))))
42, 3syl 17 . . . 4 (𝜑 → (𝑉Ref𝑈 ↔ ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))))
51, 4mpbid 232 . . 3 (𝜑 → ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))))
65simprd 495 . 2 (𝜑 → ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))
7 funmpt 6520 . . . . . 6 Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
87a1i 11 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
9 eqid 2729 . . . . . . 7 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
109dmmptss 6190 . . . . . 6 dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ ran 𝑔
11 frn 6659 . . . . . . 7 (𝑔:𝑉𝑈 → ran 𝑔𝑈)
1211ad2antlr 727 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran 𝑔𝑈)
1310, 12sstrid 3947 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈)
14 locfintop 23406 . . . . . . . . . 10 (𝑉 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
152, 14syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ Top)
1615ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → 𝐽 ∈ Top)
17 cnvimass 6033 . . . . . . . . . 10 (𝑔 “ {𝑢}) ⊆ dom 𝑔
18 fdm 6661 . . . . . . . . . . 11 (𝑔:𝑉𝑈 → dom 𝑔 = 𝑉)
1918ad3antlr 731 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → dom 𝑔 = 𝑉)
2017, 19sseqtrid 3978 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ⊆ 𝑉)
21 locfinref.3 . . . . . . . . . 10 (𝜑𝑉𝐽)
2221ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → 𝑉𝐽)
2320, 22sstrd 3946 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ⊆ 𝐽)
24 uniopn 22782 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑔 “ {𝑢}) ⊆ 𝐽) → (𝑔 “ {𝑢}) ∈ 𝐽)
2516, 23, 24syl2anc 584 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ∈ 𝐽)
2625ralrimiva 3121 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽)
279rnmptss 7057 . . . . . 6 (∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽 → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)
2826, 27syl 17 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)
29 eqid 2729 . . . . . . . . . 10 𝑉 = 𝑉
30 eqid 2729 . . . . . . . . . 10 𝑈 = 𝑈
3129, 30refbas 23395 . . . . . . . . 9 (𝑉Ref𝑈 𝑈 = 𝑉)
321, 31syl 17 . . . . . . . 8 (𝜑 𝑈 = 𝑉)
3332ad2antrr 726 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑈 = 𝑉)
34 nfv 1914 . . . . . . . . . . . . 13 𝑣(𝜑𝑔:𝑉𝑈)
35 nfra1 3253 . . . . . . . . . . . . 13 𝑣𝑣𝑉 𝑣 ⊆ (𝑔𝑣)
3634, 35nfan 1899 . . . . . . . . . . . 12 𝑣((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
37 nfre1 3254 . . . . . . . . . . . 12 𝑣𝑣𝑉 𝑥𝑣
3836, 37nfan 1899 . . . . . . . . . . 11 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣)
39 ffn 6652 . . . . . . . . . . . . . . 15 (𝑔:𝑉𝑈𝑔 Fn 𝑉)
4039ad4antlr 733 . . . . . . . . . . . . . 14 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑔 Fn 𝑉)
41 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑣𝑉)
42 fnfvelrn 7014 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑉𝑣𝑉) → (𝑔𝑣) ∈ ran 𝑔)
4340, 41, 42syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → (𝑔𝑣) ∈ ran 𝑔)
44 ssid 3958 . . . . . . . . . . . . . . 15 𝑣𝑣
4539ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑔 Fn 𝑉)
46 eqid 2729 . . . . . . . . . . . . . . . . 17 (𝑔𝑣) = (𝑔𝑣)
47 fniniseg 6994 . . . . . . . . . . . . . . . . . 18 (𝑔 Fn 𝑉 → (𝑣 ∈ (𝑔 “ {(𝑔𝑣)}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = (𝑔𝑣))))
4847biimpar 477 . . . . . . . . . . . . . . . . 17 ((𝑔 Fn 𝑉 ∧ (𝑣𝑉 ∧ (𝑔𝑣) = (𝑔𝑣))) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
4946, 48mpanr2 704 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝑉𝑣𝑉) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
5045, 49sylancom 588 . . . . . . . . . . . . . . 15 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
51 ssuni 4883 . . . . . . . . . . . . . . 15 ((𝑣𝑣𝑣 ∈ (𝑔 “ {(𝑔𝑣)})) → 𝑣 (𝑔 “ {(𝑔𝑣)}))
5244, 50, 51sylancr 587 . . . . . . . . . . . . . 14 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑣 (𝑔 “ {(𝑔𝑣)}))
5352sselda 3935 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑥 (𝑔 “ {(𝑔𝑣)}))
54 sneq 4587 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑔𝑣) → {𝑢} = {(𝑔𝑣)})
5554imaeq2d 6011 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑔𝑣) → (𝑔 “ {𝑢}) = (𝑔 “ {(𝑔𝑣)}))
5655unieqd 4871 . . . . . . . . . . . . . . 15 (𝑢 = (𝑔𝑣) → (𝑔 “ {𝑢}) = (𝑔 “ {(𝑔𝑣)}))
5756eleq2d 2814 . . . . . . . . . . . . . 14 (𝑢 = (𝑔𝑣) → (𝑥 (𝑔 “ {𝑢}) ↔ 𝑥 (𝑔 “ {(𝑔𝑣)})))
5857rspcev 3577 . . . . . . . . . . . . 13 (((𝑔𝑣) ∈ ran 𝑔𝑥 (𝑔 “ {(𝑔𝑣)})) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
5943, 53, 58syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
6059adantllr 719 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
61 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) → ∃𝑣𝑉 𝑥𝑣)
6238, 60, 61r19.29af 3238 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
63 nfv 1914 . . . . . . . . . . . . . 14 𝑣 𝑢 ∈ ran 𝑔
6436, 63nfan 1899 . . . . . . . . . . . . 13 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔)
65 nfv 1914 . . . . . . . . . . . . 13 𝑣 𝑥 (𝑔 “ {𝑢})
6664, 65nfan 1899 . . . . . . . . . . . 12 𝑣((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢}))
6720ad3antrrr 730 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → (𝑔 “ {𝑢}) ⊆ 𝑉)
68 simplr 768 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑣 ∈ (𝑔 “ {𝑢}))
6967, 68sseldd 3936 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑣𝑉)
70 simpr 484 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑥𝑣)
71 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → 𝑥 (𝑔 “ {𝑢}))
72 eluni2 4862 . . . . . . . . . . . . 13 (𝑥 (𝑔 “ {𝑢}) ↔ ∃𝑣 ∈ (𝑔 “ {𝑢})𝑥𝑣)
7371, 72sylib 218 . . . . . . . . . . . 12 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → ∃𝑣 ∈ (𝑔 “ {𝑢})𝑥𝑣)
7466, 69, 70, 73reximd2a 3239 . . . . . . . . . . 11 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → ∃𝑣𝑉 𝑥𝑣)
7574r19.29an 3133 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢})) → ∃𝑣𝑉 𝑥𝑣)
7662, 75impbida 800 . . . . . . . . 9 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (∃𝑣𝑉 𝑥𝑣 ↔ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢})))
77 eluni2 4862 . . . . . . . . 9 (𝑥 𝑉 ↔ ∃𝑣𝑉 𝑥𝑣)
78 eliun 4945 . . . . . . . . 9 (𝑥 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ↔ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
7976, 77, 783bitr4g 314 . . . . . . . 8 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (𝑥 𝑉𝑥 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8079eqrdv 2727 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑉 = 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
81 dfiun3g 5909 . . . . . . . 8 (∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8226, 81syl 17 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8333, 80, 823eqtrd 2768 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8411ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ran 𝑔𝑈)
85 vex 3440 . . . . . . . . . . 11 𝑤 ∈ V
869elrnmpt 5900 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ↔ ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢})))
8785, 86mp1i 13 . . . . . . . . . 10 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ↔ ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢})))
8887biimpa 476 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢}))
89 ssrexv 4005 . . . . . . . . 9 (ran 𝑔𝑈 → (∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢}) → ∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢})))
9084, 88, 89sylc 65 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢}))
91 nfv 1914 . . . . . . . . . 10 𝑢((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
92 nfmpt1 5191 . . . . . . . . . . . 12 𝑢(𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9392nfrn 5894 . . . . . . . . . . 11 𝑢ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9493nfcri 2883 . . . . . . . . . 10 𝑢 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9591, 94nfan 1899 . . . . . . . . 9 𝑢(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
96 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑤 = (𝑔 “ {𝑢}))
97 nfv 1914 . . . . . . . . . . . . . . . 16 𝑣 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9836, 97nfan 1899 . . . . . . . . . . . . . . 15 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
99 nfv 1914 . . . . . . . . . . . . . . 15 𝑣 𝑢𝑈
10098, 99nfan 1899 . . . . . . . . . . . . . 14 𝑣((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈)
101 nfv 1914 . . . . . . . . . . . . . 14 𝑣 𝑤 = (𝑔 “ {𝑢})
102100, 101nfan 1899 . . . . . . . . . . . . 13 𝑣(((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢}))
103 simp-5r 785 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
10439ad5antlr 735 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑔 Fn 𝑉)
105 fniniseg 6994 . . . . . . . . . . . . . . . . . . 19 (𝑔 Fn 𝑉 → (𝑣 ∈ (𝑔 “ {𝑢}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢)))
106104, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑣 ∈ (𝑔 “ {𝑢}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢)))
107106biimpa 476 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢))
108107simpld 494 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣𝑉)
109 rspa 3218 . . . . . . . . . . . . . . . 16 ((∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣) ∧ 𝑣𝑉) → 𝑣 ⊆ (𝑔𝑣))
110103, 108, 109syl2anc 584 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣 ⊆ (𝑔𝑣))
111107simprd 495 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → (𝑔𝑣) = 𝑢)
112110, 111sseqtrd 3972 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣𝑢)
113112ex 412 . . . . . . . . . . . . 13 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑣 ∈ (𝑔 “ {𝑢}) → 𝑣𝑢))
114102, 113ralrimi 3227 . . . . . . . . . . . 12 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → ∀𝑣 ∈ (𝑔 “ {𝑢})𝑣𝑢)
115 unissb 4890 . . . . . . . . . . . 12 ( (𝑔 “ {𝑢}) ⊆ 𝑢 ↔ ∀𝑣 ∈ (𝑔 “ {𝑢})𝑣𝑢)
116114, 115sylibr 234 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑔 “ {𝑢}) ⊆ 𝑢)
11796, 116eqsstrd 3970 . . . . . . . . . 10 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑤𝑢)
118117exp31 419 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → (𝑢𝑈 → (𝑤 = (𝑔 “ {𝑢}) → 𝑤𝑢)))
11995, 118reximdai 3231 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → (∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢}) → ∃𝑢𝑈 𝑤𝑢))
12090, 119mpd 15 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢𝑈 𝑤𝑢)
121120ralrimiva 3121 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)
122 vex 3440 . . . . . . . . . 10 𝑔 ∈ V
123122rnex 7843 . . . . . . . . 9 ran 𝑔 ∈ V
124123mptex 7159 . . . . . . . 8 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V
125 rnexg 7835 . . . . . . . 8 ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V)
126124, 125mp1i 13 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V)
127 eqid 2729 . . . . . . . 8 ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
128127, 30isref 23394 . . . . . . 7 (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V → (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ↔ ( 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)))
129126, 128syl 17 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ↔ ( 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)))
13083, 121, 129mpbir2and 713 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈)
13115ad2antrr 726 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝐽 ∈ Top)
132 locfinref.2 . . . . . . . 8 (𝜑𝑋 = 𝑈)
133132ad2antrr 726 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑋 = 𝑈)
134133, 83eqtrd 2764 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑋 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
135 nfv 1914 . . . . . . . . 9 𝑣 𝑥𝑋
13636, 135nfan 1899 . . . . . . . 8 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋)
137 simplr 768 . . . . . . . 8 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)) → 𝑣𝐽)
138 ffun 6655 . . . . . . . . . . . . . 14 (𝑔:𝑉𝑈 → Fun 𝑔)
139138ad6antlr 737 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → Fun 𝑔)
140 imafi 9204 . . . . . . . . . . . . 13 ((Fun 𝑔 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin)
141139, 140sylancom 588 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin)
142 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → 𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘))
143 sneq 4587 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑘 → {𝑢} = {𝑘})
144143imaeq2d 6011 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑘 → (𝑔 “ {𝑢}) = (𝑔 “ {𝑘}))
145144unieqd 4871 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑘 (𝑔 “ {𝑢}) = (𝑔 “ {𝑘}))
146122cnvex 7858 . . . . . . . . . . . . . . . . . . . . . . 23 𝑔 ∈ V
147 imaexg 7846 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 ∈ V → (𝑔 “ {𝑘}) ∈ V)
148146, 147ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 “ {𝑘}) ∈ V
149148uniex 7677 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 “ {𝑘}) ∈ V
150145, 9, 149fvmpt 6930 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ran 𝑔 → ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘) = (𝑔 “ {𝑘}))
1511503ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘) = (𝑔 “ {𝑘}))
152142, 151eqtrd 2764 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → 𝑤 = (𝑔 “ {𝑘}))
153152ineq1d 4170 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → (𝑤𝑣) = ( (𝑔 “ {𝑘}) ∩ 𝑣))
154153neeq1d 2984 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → ((𝑤𝑣) ≠ ∅ ↔ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅))
155123a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → ran 𝑔 ∈ V)
156 imaexg 7846 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 ∈ V → (𝑔 “ {𝑢}) ∈ V)
157146, 156ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑔 “ {𝑢}) ∈ V
158157uniex 7677 . . . . . . . . . . . . . . . . . . 19 (𝑔 “ {𝑢}) ∈ V
159158, 9fnmpti 6625 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) Fn ran 𝑔
160 dffn4 6742 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) Fn ran 𝑔 ↔ (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
161159, 160mpbi 230 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
162161a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
163154, 155, 162rabfodom 32449 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑘 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅})
164 sneq 4587 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑢 → {𝑘} = {𝑢})
165164imaeq2d 6011 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → (𝑔 “ {𝑘}) = (𝑔 “ {𝑢}))
166165unieqd 4871 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 (𝑔 “ {𝑘}) = (𝑔 “ {𝑢}))
167166ineq1d 4170 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑢 → ( (𝑔 “ {𝑘}) ∩ 𝑣) = ( (𝑔 “ {𝑢}) ∩ 𝑣))
168167neeq1d 2984 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑢 → (( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅ ↔ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅))
169168cbvrabv 3405 . . . . . . . . . . . . . . 15 {𝑘 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅} = {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅}
170163, 169breqtrdi 5133 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅})
171123rabex 5278 . . . . . . . . . . . . . . 15 {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} ∈ V
172 nfv 1914 . . . . . . . . . . . . . . . . . . . . 21 𝑗(((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣)
173 nfrab1 3415 . . . . . . . . . . . . . . . . . . . . . 22 𝑗{𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}
174173nfel1 2908 . . . . . . . . . . . . . . . . . . . . 21 𝑗{𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin
175172, 174nfan 1899 . . . . . . . . . . . . . . . . . . . 20 𝑗((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)
176 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑢 ∈ ran 𝑔
177175, 176nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑗(((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔)
178 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑗( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅
179177, 178nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑗((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅)
180 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑗(𝑔𝑘) = 𝑢
181173, 180nfrexw 3277 . . . . . . . . . . . . . . . . . 18 𝑗𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢
18239ad5antlr 735 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) → 𝑔 Fn 𝑉)
183182ad5antr 734 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑔 Fn 𝑉)
184 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗 ∈ (𝑔 “ {𝑢}))
185 fniniseg 6994 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 Fn 𝑉 → (𝑗 ∈ (𝑔 “ {𝑢}) ↔ (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢)))
186185biimpa 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 Fn 𝑉𝑗 ∈ (𝑔 “ {𝑢})) → (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢))
187183, 184, 186syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢))
188187simpld 494 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗𝑉)
189 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑗𝑣) ≠ ∅)
190 rabid 3416 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ↔ (𝑗𝑉 ∧ (𝑗𝑣) ≠ ∅))
191188, 189, 190sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅})
192187simprd 495 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑔𝑗) = 𝑢)
193 fveqeq2 6831 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → ((𝑔𝑘) = 𝑢 ↔ (𝑔𝑗) = 𝑢))
194193rspcev 3577 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∧ (𝑔𝑗) = 𝑢) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
195191, 192, 194syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
196 uniinn0 32494 . . . . . . . . . . . . . . . . . . . 20 (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ ↔ ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
197196biimpi 216 . . . . . . . . . . . . . . . . . . 19 (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ → ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
198197adantl 481 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) → ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
199179, 181, 195, 198r19.29af2 3237 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
200199ex 412 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) → (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢))
201200ss2rabdv 4027 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ⊆ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
202 ssdomg 8925 . . . . . . . . . . . . . . 15 ({𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} ∈ V → ({𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ⊆ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢}))
203171, 201, 202mpsyl 68 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
204 domtr 8932 . . . . . . . . . . . . . 14 (({𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ∧ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢}) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
205170, 203, 204syl2anc 584 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
206182adantr 480 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → 𝑔 Fn 𝑉)
207 dffn3 6664 . . . . . . . . . . . . . . 15 (𝑔 Fn 𝑉𝑔:𝑉⟶ran 𝑔)
208207biimpi 216 . . . . . . . . . . . . . 14 (𝑔 Fn 𝑉𝑔:𝑉⟶ran 𝑔)
209 ssrab2 4031 . . . . . . . . . . . . . . 15 {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ⊆ 𝑉
210 fimarab 6897 . . . . . . . . . . . . . . 15 ((𝑔:𝑉⟶ran 𝑔 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ⊆ 𝑉) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
211209, 210mpan2 691 . . . . . . . . . . . . . 14 (𝑔:𝑉⟶ran 𝑔 → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
212206, 208, 2113syl 18 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
213205, 212breqtrrd 5120 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}))
214 domfi 9103 . . . . . . . . . . . 12 (((𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅})) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)
215141, 213, 214syl2anc 584 . . . . . . . . . . 11 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)
216215ex 412 . . . . . . . . . 10 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) → ({𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
217216imdistanda 571 . . . . . . . . 9 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) → ((𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)))
218217imp 406 . . . . . . . 8 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)) → (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
219 simplll 774 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → 𝜑)
220 locfinref.x . . . . . . . . . . . . 13 𝑋 = 𝐽
221220, 29islocfin 23402 . . . . . . . . . . . 12 (𝑉 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑉 ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)))
2222, 221sylib 218 . . . . . . . . . . 11 (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = 𝑉 ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)))
223222simp3d 1144 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
224223r19.21bi 3221 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
225219, 224sylancom 588 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
226136, 137, 218, 225reximd2a 3239 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
227226ralrimiva 3121 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
228220, 127islocfin 23402 . . . . . 6 (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)))
229131, 134, 227, 228syl3anbrc 1344 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))
230 funeq 6502 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (Fun 𝑓 ↔ Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))))
231 dmeq 5846 . . . . . . . . 9 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → dom 𝑓 = dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
232231sseq1d 3967 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (dom 𝑓𝑈 ↔ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈))
233 rneq 5878 . . . . . . . . 9 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ran 𝑓 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
234233sseq1d 3967 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓𝐽 ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽))
235230, 232, 2343anbi123d 1438 . . . . . . 7 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ↔ (Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)))
236233breq1d 5102 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓Ref𝑈 ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈))
237233eleq1d 2813 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓 ∈ (LocFin‘𝐽) ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽)))
238236, 237anbi12d 632 . . . . . . 7 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ((ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)) ↔ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))))
239235, 238anbi12d 632 . . . . . 6 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) ↔ ((Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽) ∧ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽)))))
240124, 239spcev 3561 . . . . 5 (((Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽) ∧ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
2418, 13, 28, 130, 229, 240syl32anc 1380 . . . 4 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
242241expl 457 . . 3 (𝜑 → ((𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))))
243242exlimdv 1933 . 2 (𝜑 → (∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))))
2446, 243mpd 15 1 (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  {crab 3394  Vcvv 3436  cin 3902  wss 3903  c0 4284  {csn 4577   cuni 4858   ciun 4941   class class class wbr 5092  cmpt 5173  ccnv 5618  dom cdm 5619  ran crn 5620  cima 5622  Fun wfun 6476   Fn wfn 6477  wf 6478  ontowfo 6480  cfv 6482  cdom 8870  Fincfn 8872  Topctop 22778  Refcref 23387  LocFinclocfin 23389
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-reg 9484  ax-inf2 9537  ax-ac2 10357
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-om 7800  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-en 8873  df-dom 8874  df-fin 8876  df-r1 9660  df-rank 9661  df-card 9835  df-ac 10010  df-top 22779  df-ref 23390  df-locfin 23392
This theorem is referenced by:  locfinref  33814
  Copyright terms: Public domain W3C validator