Step | Hyp | Ref
| Expression |
1 | | locfinref.4 |
. . . 4
⊢ (𝜑 → 𝑉Ref𝑈) |
2 | | locfinref.5 |
. . . . 5
⊢ (𝜑 → 𝑉 ∈ (LocFin‘𝐽)) |
3 | | reff 31691 |
. . . . 5
⊢ (𝑉 ∈ (LocFin‘𝐽) → (𝑉Ref𝑈 ↔ (∪ 𝑈 ⊆ ∪ 𝑉
∧ ∃𝑔(𝑔:𝑉⟶𝑈 ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣))))) |
4 | 2, 3 | syl 17 |
. . . 4
⊢ (𝜑 → (𝑉Ref𝑈 ↔ (∪ 𝑈 ⊆ ∪ 𝑉
∧ ∃𝑔(𝑔:𝑉⟶𝑈 ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣))))) |
5 | 1, 4 | mpbid 231 |
. . 3
⊢ (𝜑 → (∪ 𝑈
⊆ ∪ 𝑉 ∧ ∃𝑔(𝑔:𝑉⟶𝑈 ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)))) |
6 | 5 | simprd 495 |
. 2
⊢ (𝜑 → ∃𝑔(𝑔:𝑉⟶𝑈 ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣))) |
7 | | funmpt 6456 |
. . . . . 6
⊢ Fun
(𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) |
8 | 7 | a1i 11 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → Fun (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) |
9 | | eqid 2738 |
. . . . . . 7
⊢ (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) = (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) |
10 | 9 | dmmptss 6133 |
. . . . . 6
⊢ dom
(𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ ran 𝑔 |
11 | | frn 6591 |
. . . . . . 7
⊢ (𝑔:𝑉⟶𝑈 → ran 𝑔 ⊆ 𝑈) |
12 | 11 | ad2antlr 723 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ran 𝑔 ⊆ 𝑈) |
13 | 10, 12 | sstrid 3928 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → dom (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ 𝑈) |
14 | | locfintop 22580 |
. . . . . . . . . 10
⊢ (𝑉 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top) |
15 | 2, 14 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐽 ∈ Top) |
16 | 15 | ad3antrrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) → 𝐽 ∈ Top) |
17 | | cnvimass 5978 |
. . . . . . . . . 10
⊢ (◡𝑔 “ {𝑢}) ⊆ dom 𝑔 |
18 | | fdm 6593 |
. . . . . . . . . . 11
⊢ (𝑔:𝑉⟶𝑈 → dom 𝑔 = 𝑉) |
19 | 18 | ad3antlr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) → dom 𝑔 = 𝑉) |
20 | 17, 19 | sseqtrid 3969 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (◡𝑔 “ {𝑢}) ⊆ 𝑉) |
21 | | locfinref.3 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑉 ⊆ 𝐽) |
22 | 21 | ad3antrrr 726 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) → 𝑉 ⊆ 𝐽) |
23 | 20, 22 | sstrd 3927 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (◡𝑔 “ {𝑢}) ⊆ 𝐽) |
24 | | uniopn 21954 |
. . . . . . . 8
⊢ ((𝐽 ∈ Top ∧ (◡𝑔 “ {𝑢}) ⊆ 𝐽) → ∪ (◡𝑔 “ {𝑢}) ∈ 𝐽) |
25 | 16, 23, 24 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) → ∪ (◡𝑔 “ {𝑢}) ∈ 𝐽) |
26 | 25 | ralrimiva 3107 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ∀𝑢 ∈ ran 𝑔∪ (◡𝑔 “ {𝑢}) ∈ 𝐽) |
27 | 9 | rnmptss 6978 |
. . . . . 6
⊢
(∀𝑢 ∈
ran 𝑔∪ (◡𝑔 “ {𝑢}) ∈ 𝐽 → ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ 𝐽) |
28 | 26, 27 | syl 17 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ 𝐽) |
29 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ 𝑉 =
∪ 𝑉 |
30 | | eqid 2738 |
. . . . . . . . . 10
⊢ ∪ 𝑈 =
∪ 𝑈 |
31 | 29, 30 | refbas 22569 |
. . . . . . . . 9
⊢ (𝑉Ref𝑈 → ∪ 𝑈 = ∪
𝑉) |
32 | 1, 31 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → ∪ 𝑈 =
∪ 𝑉) |
33 | 32 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ∪ 𝑈 = ∪
𝑉) |
34 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣(𝜑 ∧ 𝑔:𝑉⟶𝑈) |
35 | | nfra1 3142 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣) |
36 | 34, 35 | nfan 1903 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑣((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) |
37 | | nfre1 3234 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑣∃𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 |
38 | 36, 37 | nfan 1903 |
. . . . . . . . . . 11
⊢
Ⅎ𝑣(((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ ∃𝑣 ∈ 𝑉 𝑥 ∈ 𝑣) |
39 | | ffn 6584 |
. . . . . . . . . . . . . . 15
⊢ (𝑔:𝑉⟶𝑈 → 𝑔 Fn 𝑉) |
40 | 39 | ad4antlr 729 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑣 ∈ 𝑉) ∧ 𝑥 ∈ 𝑣) → 𝑔 Fn 𝑉) |
41 | | simplr 765 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑣 ∈ 𝑉) ∧ 𝑥 ∈ 𝑣) → 𝑣 ∈ 𝑉) |
42 | | fnfvelrn 6940 |
. . . . . . . . . . . . . 14
⊢ ((𝑔 Fn 𝑉 ∧ 𝑣 ∈ 𝑉) → (𝑔‘𝑣) ∈ ran 𝑔) |
43 | 40, 41, 42 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑣 ∈ 𝑉) ∧ 𝑥 ∈ 𝑣) → (𝑔‘𝑣) ∈ ran 𝑔) |
44 | | ssid 3939 |
. . . . . . . . . . . . . . 15
⊢ 𝑣 ⊆ 𝑣 |
45 | 39 | ad3antlr 727 |
. . . . . . . . . . . . . . . 16
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑣 ∈ 𝑉) → 𝑔 Fn 𝑉) |
46 | | eqid 2738 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑔‘𝑣) = (𝑔‘𝑣) |
47 | | fniniseg 6919 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑔 Fn 𝑉 → (𝑣 ∈ (◡𝑔 “ {(𝑔‘𝑣)}) ↔ (𝑣 ∈ 𝑉 ∧ (𝑔‘𝑣) = (𝑔‘𝑣)))) |
48 | 47 | biimpar 477 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑔 Fn 𝑉 ∧ (𝑣 ∈ 𝑉 ∧ (𝑔‘𝑣) = (𝑔‘𝑣))) → 𝑣 ∈ (◡𝑔 “ {(𝑔‘𝑣)})) |
49 | 46, 48 | mpanr2 700 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑔 Fn 𝑉 ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ (◡𝑔 “ {(𝑔‘𝑣)})) |
50 | 45, 49 | sylancom 587 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑣 ∈ 𝑉) → 𝑣 ∈ (◡𝑔 “ {(𝑔‘𝑣)})) |
51 | | ssuni 4863 |
. . . . . . . . . . . . . . 15
⊢ ((𝑣 ⊆ 𝑣 ∧ 𝑣 ∈ (◡𝑔 “ {(𝑔‘𝑣)})) → 𝑣 ⊆ ∪ (◡𝑔 “ {(𝑔‘𝑣)})) |
52 | 44, 50, 51 | sylancr 586 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑣 ∈ 𝑉) → 𝑣 ⊆ ∪ (◡𝑔 “ {(𝑔‘𝑣)})) |
53 | 52 | sselda 3917 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑣 ∈ 𝑉) ∧ 𝑥 ∈ 𝑣) → 𝑥 ∈ ∪ (◡𝑔 “ {(𝑔‘𝑣)})) |
54 | | sneq 4568 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 = (𝑔‘𝑣) → {𝑢} = {(𝑔‘𝑣)}) |
55 | 54 | imaeq2d 5958 |
. . . . . . . . . . . . . . . 16
⊢ (𝑢 = (𝑔‘𝑣) → (◡𝑔 “ {𝑢}) = (◡𝑔 “ {(𝑔‘𝑣)})) |
56 | 55 | unieqd 4850 |
. . . . . . . . . . . . . . 15
⊢ (𝑢 = (𝑔‘𝑣) → ∪ (◡𝑔 “ {𝑢}) = ∪ (◡𝑔 “ {(𝑔‘𝑣)})) |
57 | 56 | eleq2d 2824 |
. . . . . . . . . . . . . 14
⊢ (𝑢 = (𝑔‘𝑣) → (𝑥 ∈ ∪ (◡𝑔 “ {𝑢}) ↔ 𝑥 ∈ ∪ (◡𝑔 “ {(𝑔‘𝑣)}))) |
58 | 57 | rspcev 3552 |
. . . . . . . . . . . . 13
⊢ (((𝑔‘𝑣) ∈ ran 𝑔 ∧ 𝑥 ∈ ∪ (◡𝑔 “ {(𝑔‘𝑣)})) → ∃𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) |
59 | 43, 53, 58 | syl2anc 583 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑣 ∈ 𝑉) ∧ 𝑥 ∈ 𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) |
60 | 59 | adantllr 715 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ ∃𝑣 ∈ 𝑉 𝑥 ∈ 𝑣) ∧ 𝑣 ∈ 𝑉) ∧ 𝑥 ∈ 𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) |
61 | | simpr 484 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ ∃𝑣 ∈ 𝑉 𝑥 ∈ 𝑣) → ∃𝑣 ∈ 𝑉 𝑥 ∈ 𝑣) |
62 | 38, 60, 61 | r19.29af 3259 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ ∃𝑣 ∈ 𝑉 𝑥 ∈ 𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) |
63 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑣 𝑢 ∈ ran 𝑔 |
64 | 36, 63 | nfan 1903 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣(((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) |
65 | | nfv 1918 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣 𝑥 ∈ ∪ (◡𝑔 “ {𝑢}) |
66 | 64, 65 | nfan 1903 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑣((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) |
67 | 20 | ad3antrrr 726 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) ∧ 𝑣 ∈ (◡𝑔 “ {𝑢})) ∧ 𝑥 ∈ 𝑣) → (◡𝑔 “ {𝑢}) ⊆ 𝑉) |
68 | | simplr 765 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) ∧ 𝑣 ∈ (◡𝑔 “ {𝑢})) ∧ 𝑥 ∈ 𝑣) → 𝑣 ∈ (◡𝑔 “ {𝑢})) |
69 | 67, 68 | sseldd 3918 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) ∧ 𝑣 ∈ (◡𝑔 “ {𝑢})) ∧ 𝑥 ∈ 𝑣) → 𝑣 ∈ 𝑉) |
70 | | simpr 484 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) ∧ 𝑣 ∈ (◡𝑔 “ {𝑢})) ∧ 𝑥 ∈ 𝑣) → 𝑥 ∈ 𝑣) |
71 | | simpr 484 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) → 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) |
72 | | eluni2 4840 |
. . . . . . . . . . . . 13
⊢ (𝑥 ∈ ∪ (◡𝑔 “ {𝑢}) ↔ ∃𝑣 ∈ (◡𝑔 “ {𝑢})𝑥 ∈ 𝑣) |
73 | 71, 72 | sylib 217 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) → ∃𝑣 ∈ (◡𝑔 “ {𝑢})𝑥 ∈ 𝑣) |
74 | 66, 69, 70, 73 | reximd2a 3240 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) → ∃𝑣 ∈ 𝑉 𝑥 ∈ 𝑣) |
75 | 74 | r19.29an 3216 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ ∃𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) → ∃𝑣 ∈ 𝑉 𝑥 ∈ 𝑣) |
76 | 62, 75 | impbida 797 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → (∃𝑣 ∈ 𝑉 𝑥 ∈ 𝑣 ↔ ∃𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ (◡𝑔 “ {𝑢}))) |
77 | | eluni2 4840 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ 𝑉
↔ ∃𝑣 ∈
𝑉 𝑥 ∈ 𝑣) |
78 | | eliun 4925 |
. . . . . . . . 9
⊢ (𝑥 ∈ ∪ 𝑢 ∈ ran 𝑔∪ (◡𝑔 “ {𝑢}) ↔ ∃𝑢 ∈ ran 𝑔 𝑥 ∈ ∪ (◡𝑔 “ {𝑢})) |
79 | 76, 77, 78 | 3bitr4g 313 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → (𝑥 ∈ ∪ 𝑉 ↔ 𝑥 ∈ ∪
𝑢 ∈ ran 𝑔∪
(◡𝑔 “ {𝑢}))) |
80 | 79 | eqrdv 2736 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ∪ 𝑉 = ∪ 𝑢 ∈ ran 𝑔∪ (◡𝑔 “ {𝑢})) |
81 | | dfiun3g 5862 |
. . . . . . . 8
⊢
(∀𝑢 ∈
ran 𝑔∪ (◡𝑔 “ {𝑢}) ∈ 𝐽 → ∪
𝑢 ∈ ran 𝑔∪
(◡𝑔 “ {𝑢}) = ∪ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) |
82 | 26, 81 | syl 17 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ∪
𝑢 ∈ ran 𝑔∪
(◡𝑔 “ {𝑢}) = ∪ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) |
83 | 33, 80, 82 | 3eqtrd 2782 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ∪ 𝑈 = ∪
ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) |
84 | 11 | ad3antlr 727 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) → ran 𝑔 ⊆ 𝑈) |
85 | | vex 3426 |
. . . . . . . . . . 11
⊢ 𝑤 ∈ V |
86 | 9 | elrnmpt 5854 |
. . . . . . . . . . 11
⊢ (𝑤 ∈ V → (𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ↔ ∃𝑢 ∈ ran 𝑔 𝑤 = ∪ (◡𝑔 “ {𝑢}))) |
87 | 85, 86 | mp1i 13 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → (𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ↔ ∃𝑢 ∈ ran 𝑔 𝑤 = ∪ (◡𝑔 “ {𝑢}))) |
88 | 87 | biimpa 476 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) → ∃𝑢 ∈ ran 𝑔 𝑤 = ∪ (◡𝑔 “ {𝑢})) |
89 | | ssrexv 3984 |
. . . . . . . . 9
⊢ (ran
𝑔 ⊆ 𝑈 → (∃𝑢 ∈ ran 𝑔 𝑤 = ∪ (◡𝑔 “ {𝑢}) → ∃𝑢 ∈ 𝑈 𝑤 = ∪ (◡𝑔 “ {𝑢}))) |
90 | 84, 88, 89 | sylc 65 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) → ∃𝑢 ∈ 𝑈 𝑤 = ∪ (◡𝑔 “ {𝑢})) |
91 | | nfv 1918 |
. . . . . . . . . 10
⊢
Ⅎ𝑢((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) |
92 | | nfmpt1 5178 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑢(𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) |
93 | 92 | nfrn 5850 |
. . . . . . . . . . 11
⊢
Ⅎ𝑢ran
(𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) |
94 | 93 | nfcri 2893 |
. . . . . . . . . 10
⊢
Ⅎ𝑢 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) |
95 | 91, 94 | nfan 1903 |
. . . . . . . . 9
⊢
Ⅎ𝑢(((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) |
96 | | simpr 484 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) → 𝑤 = ∪ (◡𝑔 “ {𝑢})) |
97 | | nfv 1918 |
. . . . . . . . . . . . . . . 16
⊢
Ⅎ𝑣 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) |
98 | 36, 97 | nfan 1903 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑣(((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) |
99 | | nfv 1918 |
. . . . . . . . . . . . . . 15
⊢
Ⅎ𝑣 𝑢 ∈ 𝑈 |
100 | 98, 99 | nfan 1903 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑣((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) |
101 | | nfv 1918 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑣 𝑤 = ∪
(◡𝑔 “ {𝑢}) |
102 | 100, 101 | nfan 1903 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑣(((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) |
103 | | simp-5r 782 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) ∧ 𝑣 ∈ (◡𝑔 “ {𝑢})) → ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) |
104 | 39 | ad5antlr 731 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) → 𝑔 Fn 𝑉) |
105 | | fniniseg 6919 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔 Fn 𝑉 → (𝑣 ∈ (◡𝑔 “ {𝑢}) ↔ (𝑣 ∈ 𝑉 ∧ (𝑔‘𝑣) = 𝑢))) |
106 | 104, 105 | syl 17 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) → (𝑣 ∈ (◡𝑔 “ {𝑢}) ↔ (𝑣 ∈ 𝑉 ∧ (𝑔‘𝑣) = 𝑢))) |
107 | 106 | biimpa 476 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) ∧ 𝑣 ∈ (◡𝑔 “ {𝑢})) → (𝑣 ∈ 𝑉 ∧ (𝑔‘𝑣) = 𝑢)) |
108 | 107 | simpld 494 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) ∧ 𝑣 ∈ (◡𝑔 “ {𝑢})) → 𝑣 ∈ 𝑉) |
109 | | rspa 3130 |
. . . . . . . . . . . . . . . 16
⊢
((∀𝑣 ∈
𝑉 𝑣 ⊆ (𝑔‘𝑣) ∧ 𝑣 ∈ 𝑉) → 𝑣 ⊆ (𝑔‘𝑣)) |
110 | 103, 108,
109 | syl2anc 583 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) ∧ 𝑣 ∈ (◡𝑔 “ {𝑢})) → 𝑣 ⊆ (𝑔‘𝑣)) |
111 | 107 | simprd 495 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) ∧ 𝑣 ∈ (◡𝑔 “ {𝑢})) → (𝑔‘𝑣) = 𝑢) |
112 | 110, 111 | sseqtrd 3957 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) ∧ 𝑣 ∈ (◡𝑔 “ {𝑢})) → 𝑣 ⊆ 𝑢) |
113 | 112 | ex 412 |
. . . . . . . . . . . . 13
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) → (𝑣 ∈ (◡𝑔 “ {𝑢}) → 𝑣 ⊆ 𝑢)) |
114 | 102, 113 | ralrimi 3139 |
. . . . . . . . . . . 12
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) → ∀𝑣 ∈ (◡𝑔 “ {𝑢})𝑣 ⊆ 𝑢) |
115 | | unissb 4870 |
. . . . . . . . . . . 12
⊢ (∪ (◡𝑔 “ {𝑢}) ⊆ 𝑢 ↔ ∀𝑣 ∈ (◡𝑔 “ {𝑢})𝑣 ⊆ 𝑢) |
116 | 114, 115 | sylibr 233 |
. . . . . . . . . . 11
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) → ∪
(◡𝑔 “ {𝑢}) ⊆ 𝑢) |
117 | 96, 116 | eqsstrd 3955 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) ∧ 𝑢 ∈ 𝑈) ∧ 𝑤 = ∪ (◡𝑔 “ {𝑢})) → 𝑤 ⊆ 𝑢) |
118 | 117 | exp31 419 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) → (𝑢 ∈ 𝑈 → (𝑤 = ∪ (◡𝑔 “ {𝑢}) → 𝑤 ⊆ 𝑢))) |
119 | 95, 118 | reximdai 3239 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) → (∃𝑢 ∈ 𝑈 𝑤 = ∪ (◡𝑔 “ {𝑢}) → ∃𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢)) |
120 | 90, 119 | mpd 15 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) → ∃𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢) |
121 | 120 | ralrimiva 3107 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))∃𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢) |
122 | | vex 3426 |
. . . . . . . . . 10
⊢ 𝑔 ∈ V |
123 | 122 | rnex 7733 |
. . . . . . . . 9
⊢ ran 𝑔 ∈ V |
124 | 123 | mptex 7081 |
. . . . . . . 8
⊢ (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∈ V |
125 | | rnexg 7725 |
. . . . . . . 8
⊢ ((𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∈ V → ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∈ V) |
126 | 124, 125 | mp1i 13 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∈ V) |
127 | | eqid 2738 |
. . . . . . . 8
⊢ ∪ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) = ∪ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) |
128 | 127, 30 | isref 22568 |
. . . . . . 7
⊢ (ran
(𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∈ V → (ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))Ref𝑈 ↔ (∪ 𝑈 = ∪
ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∧ ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))∃𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢))) |
129 | 126, 128 | syl 17 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → (ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))Ref𝑈 ↔ (∪ 𝑈 = ∪
ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∧ ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))∃𝑢 ∈ 𝑈 𝑤 ⊆ 𝑢))) |
130 | 83, 121, 129 | mpbir2and 709 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))Ref𝑈) |
131 | 15 | ad2antrr 722 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → 𝐽 ∈ Top) |
132 | | locfinref.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑋 = ∪ 𝑈) |
133 | 132 | ad2antrr 722 |
. . . . . . 7
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → 𝑋 = ∪ 𝑈) |
134 | 133, 83 | eqtrd 2778 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → 𝑋 = ∪ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) |
135 | | nfv 1918 |
. . . . . . . . 9
⊢
Ⅎ𝑣 𝑥 ∈ 𝑋 |
136 | 36, 135 | nfan 1903 |
. . . . . . . 8
⊢
Ⅎ𝑣(((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) |
137 | | simplr 765 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ (𝑥 ∈ 𝑣 ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin)) → 𝑣 ∈ 𝐽) |
138 | | ffun 6587 |
. . . . . . . . . . . . . 14
⊢ (𝑔:𝑉⟶𝑈 → Fun 𝑔) |
139 | 138 | ad6antlr 733 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → Fun 𝑔) |
140 | | imafi 8920 |
. . . . . . . . . . . . 13
⊢ ((Fun
𝑔 ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅}) ∈ Fin) |
141 | 139, 140 | sylancom 587 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅}) ∈ Fin) |
142 | | simp3 1136 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ((𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))‘𝑘)) → 𝑤 = ((𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))‘𝑘)) |
143 | | sneq 4568 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑢 = 𝑘 → {𝑢} = {𝑘}) |
144 | 143 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (𝑢 = 𝑘 → (◡𝑔 “ {𝑢}) = (◡𝑔 “ {𝑘})) |
145 | 144 | unieqd 4850 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑢 = 𝑘 → ∪ (◡𝑔 “ {𝑢}) = ∪ (◡𝑔 “ {𝑘})) |
146 | 122 | cnvex 7746 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ◡𝑔 ∈ V |
147 | | imaexg 7736 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (◡𝑔 ∈ V → (◡𝑔 “ {𝑘}) ∈ V) |
148 | 146, 147 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ (◡𝑔 “ {𝑘}) ∈ V |
149 | 148 | uniex 7572 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ∪ (◡𝑔 “ {𝑘}) ∈ V |
150 | 145, 9, 149 | fvmpt 6857 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 ∈ ran 𝑔 → ((𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))‘𝑘) = ∪ (◡𝑔 “ {𝑘})) |
151 | 150 | 3ad2ant2 1132 |
. . . . . . . . . . . . . . . . . . 19
⊢
((((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ((𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))‘𝑘)) → ((𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))‘𝑘) = ∪ (◡𝑔 “ {𝑘})) |
152 | 142, 151 | eqtrd 2778 |
. . . . . . . . . . . . . . . . . 18
⊢
((((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ((𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))‘𝑘)) → 𝑤 = ∪ (◡𝑔 “ {𝑘})) |
153 | 152 | ineq1d 4142 |
. . . . . . . . . . . . . . . . 17
⊢
((((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ((𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))‘𝑘)) → (𝑤 ∩ 𝑣) = (∪ (◡𝑔 “ {𝑘}) ∩ 𝑣)) |
154 | 153 | neeq1d 3002 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔 ∧ 𝑤 = ((𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))‘𝑘)) → ((𝑤 ∩ 𝑣) ≠ ∅ ↔ (∪ (◡𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅)) |
155 | 123 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → ran 𝑔 ∈ V) |
156 | | imaexg 7736 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (◡𝑔 ∈ V → (◡𝑔 “ {𝑢}) ∈ V) |
157 | 146, 156 | ax-mp 5 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (◡𝑔 “ {𝑢}) ∈ V |
158 | 157 | uniex 7572 |
. . . . . . . . . . . . . . . . . . 19
⊢ ∪ (◡𝑔 “ {𝑢}) ∈ V |
159 | 158, 9 | fnmpti 6560 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) Fn ran 𝑔 |
160 | | dffn4 6678 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) Fn ran 𝑔 ↔ (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})):ran 𝑔–onto→ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) |
161 | 159, 160 | mpbi 229 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})):ran 𝑔–onto→ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) |
162 | 161 | a1i 11 |
. . . . . . . . . . . . . . . 16
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})):ran 𝑔–onto→ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) |
163 | 154, 155,
162 | rabfodom 30752 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ≼ {𝑘 ∈ ran 𝑔 ∣ (∪ (◡𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅}) |
164 | | sneq 4568 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑢 → {𝑘} = {𝑢}) |
165 | 164 | imaeq2d 5958 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑢 → (◡𝑔 “ {𝑘}) = (◡𝑔 “ {𝑢})) |
166 | 165 | unieqd 4850 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑢 → ∪ (◡𝑔 “ {𝑘}) = ∪ (◡𝑔 “ {𝑢})) |
167 | 166 | ineq1d 4142 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑘 = 𝑢 → (∪ (◡𝑔 “ {𝑘}) ∩ 𝑣) = (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣)) |
168 | 167 | neeq1d 3002 |
. . . . . . . . . . . . . . . 16
⊢ (𝑘 = 𝑢 → ((∪ (◡𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅ ↔ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅)) |
169 | 168 | cbvrabv 3416 |
. . . . . . . . . . . . . . 15
⊢ {𝑘 ∈ ran 𝑔 ∣ (∪ (◡𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅} = {𝑢 ∈ ran 𝑔 ∣ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} |
170 | 163, 169 | breqtrdi 5111 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅}) |
171 | 123 | rabex 5251 |
. . . . . . . . . . . . . . 15
⊢ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢} ∈ V |
172 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑗(((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) |
173 | | nfrab1 3310 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
Ⅎ𝑗{𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} |
174 | 173 | nfel1 2922 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑗{𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin |
175 | 172, 174 | nfan 1903 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) |
176 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑗 𝑢 ∈ ran 𝑔 |
177 | 175, 176 | nfan 1903 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) |
178 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗(∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ |
179 | 177, 178 | nfan 1903 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗((((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) |
180 | | nfv 1918 |
. . . . . . . . . . . . . . . . . . 19
⊢
Ⅎ𝑗(𝑔‘𝑘) = 𝑢 |
181 | 173, 180 | nfrex 3237 |
. . . . . . . . . . . . . . . . . 18
⊢
Ⅎ𝑗∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢 |
182 | 39 | ad5antlr 731 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → 𝑔 Fn 𝑉) |
183 | 182 | ad5antr 730 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((((𝜑 ∧
𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (◡𝑔 “ {𝑢})) ∧ (𝑗 ∩ 𝑣) ≠ ∅) → 𝑔 Fn 𝑉) |
184 | | simplr 765 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(((((((((((𝜑 ∧
𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (◡𝑔 “ {𝑢})) ∧ (𝑗 ∩ 𝑣) ≠ ∅) → 𝑗 ∈ (◡𝑔 “ {𝑢})) |
185 | | fniniseg 6919 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑔 Fn 𝑉 → (𝑗 ∈ (◡𝑔 “ {𝑢}) ↔ (𝑗 ∈ 𝑉 ∧ (𝑔‘𝑗) = 𝑢))) |
186 | 185 | biimpa 476 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝑔 Fn 𝑉 ∧ 𝑗 ∈ (◡𝑔 “ {𝑢})) → (𝑗 ∈ 𝑉 ∧ (𝑔‘𝑗) = 𝑢)) |
187 | 183, 184,
186 | syl2anc 583 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
(((((((((((𝜑 ∧
𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (◡𝑔 “ {𝑢})) ∧ (𝑗 ∩ 𝑣) ≠ ∅) → (𝑗 ∈ 𝑉 ∧ (𝑔‘𝑗) = 𝑢)) |
188 | 187 | simpld 494 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((((𝜑 ∧
𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (◡𝑔 “ {𝑢})) ∧ (𝑗 ∩ 𝑣) ≠ ∅) → 𝑗 ∈ 𝑉) |
189 | | simpr 484 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(((((((((((𝜑 ∧
𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (◡𝑔 “ {𝑢})) ∧ (𝑗 ∩ 𝑣) ≠ ∅) → (𝑗 ∩ 𝑣) ≠ ∅) |
190 | | rabid 3304 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ↔ (𝑗 ∈ 𝑉 ∧ (𝑗 ∩ 𝑣) ≠ ∅)) |
191 | 188, 189,
190 | sylanbrc 582 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((((𝜑 ∧
𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (◡𝑔 “ {𝑢})) ∧ (𝑗 ∩ 𝑣) ≠ ∅) → 𝑗 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅}) |
192 | 187 | simprd 495 |
. . . . . . . . . . . . . . . . . . 19
⊢
(((((((((((𝜑 ∧
𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (◡𝑔 “ {𝑢})) ∧ (𝑗 ∩ 𝑣) ≠ ∅) → (𝑔‘𝑗) = 𝑢) |
193 | | fveqeq2 6765 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑗 → ((𝑔‘𝑘) = 𝑢 ↔ (𝑔‘𝑗) = 𝑢)) |
194 | 193 | rspcev 3552 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∧ (𝑔‘𝑗) = 𝑢) → ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢) |
195 | 191, 192,
194 | syl2anc 583 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((((𝜑 ∧
𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (◡𝑔 “ {𝑢})) ∧ (𝑗 ∩ 𝑣) ≠ ∅) → ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢) |
196 | | uniinn0 30791 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ ↔ ∃𝑗 ∈ (◡𝑔 “ {𝑢})(𝑗 ∩ 𝑣) ≠ ∅) |
197 | 196 | biimpi 215 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ → ∃𝑗 ∈ (◡𝑔 “ {𝑢})(𝑗 ∩ 𝑣) ≠ ∅) |
198 | 197 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢
(((((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) → ∃𝑗 ∈ (◡𝑔 “ {𝑢})(𝑗 ∩ 𝑣) ≠ ∅) |
199 | 179, 181,
195, 198 | r19.29af2 3258 |
. . . . . . . . . . . . . . . . 17
⊢
(((((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) → ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢) |
200 | 199 | ex 412 |
. . . . . . . . . . . . . . . 16
⊢
((((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) → ((∪
(◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ → ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢)) |
201 | 200 | ss2rabdv 4005 |
. . . . . . . . . . . . . . 15
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → {𝑢 ∈ ran 𝑔 ∣ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ⊆ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢}) |
202 | | ssdomg 8741 |
. . . . . . . . . . . . . . 15
⊢ ({𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢} ∈ V → ({𝑢 ∈ ran 𝑔 ∣ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ⊆ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢} → {𝑢 ∈ ran 𝑔 ∣ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢})) |
203 | 171, 201,
202 | mpsyl 68 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → {𝑢 ∈ ran 𝑔 ∣ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢}) |
204 | | domtr 8748 |
. . . . . . . . . . . . . 14
⊢ (({𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ∧ {𝑢 ∈ ran 𝑔 ∣ (∪ (◡𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢}) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢}) |
205 | 170, 203,
204 | syl2anc 583 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢}) |
206 | 182 | adantr 480 |
. . . . . . . . . . . . . 14
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → 𝑔 Fn 𝑉) |
207 | | dffn3 6597 |
. . . . . . . . . . . . . . 15
⊢ (𝑔 Fn 𝑉 ↔ 𝑔:𝑉⟶ran 𝑔) |
208 | 207 | biimpi 215 |
. . . . . . . . . . . . . 14
⊢ (𝑔 Fn 𝑉 → 𝑔:𝑉⟶ran 𝑔) |
209 | | ssrab2 4009 |
. . . . . . . . . . . . . . 15
⊢ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ⊆ 𝑉 |
210 | | fimarab 30881 |
. . . . . . . . . . . . . . 15
⊢ ((𝑔:𝑉⟶ran 𝑔 ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ⊆ 𝑉) → (𝑔 “ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢}) |
211 | 209, 210 | mpan2 687 |
. . . . . . . . . . . . . 14
⊢ (𝑔:𝑉⟶ran 𝑔 → (𝑔 “ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢}) |
212 | 206, 208,
211 | 3syl 18 |
. . . . . . . . . . . . 13
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} (𝑔‘𝑘) = 𝑢}) |
213 | 205, 212 | breqtrrd 5098 |
. . . . . . . . . . . 12
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ≼ (𝑔 “ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅})) |
214 | | domfi 8935 |
. . . . . . . . . . . 12
⊢ (((𝑔 “ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅}) ∈ Fin ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ≼ (𝑔 “ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅})) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ∈ Fin) |
215 | 141, 213,
214 | syl2anc 583 |
. . . . . . . . . . 11
⊢
(((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ∈ Fin) |
216 | 215 | ex 412 |
. . . . . . . . . 10
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ 𝑥 ∈ 𝑣) → ({𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ∈ Fin)) |
217 | 216 | imdistanda 571 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) → ((𝑥 ∈ 𝑣 ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin) → (𝑥 ∈ 𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ∈
Fin))) |
218 | 217 | imp 406 |
. . . . . . . 8
⊢
((((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) ∧ 𝑣 ∈ 𝐽) ∧ (𝑥 ∈ 𝑣 ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin)) → (𝑥 ∈ 𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ∈ Fin)) |
219 | | simplll 771 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) → 𝜑) |
220 | | locfinref.x |
. . . . . . . . . . . . 13
⊢ 𝑋 = ∪
𝐽 |
221 | 220, 29 | islocfin 22576 |
. . . . . . . . . . . 12
⊢ (𝑉 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈
Fin))) |
222 | 2, 221 | sylib 217 |
. . . . . . . . . . 11
⊢ (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = ∪ 𝑉 ∧ ∀𝑥 ∈ 𝑋 ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈
Fin))) |
223 | 222 | simp3d 1142 |
. . . . . . . . . 10
⊢ (𝜑 → ∀𝑥 ∈ 𝑋 ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin)) |
224 | 223 | r19.21bi 3132 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝑋) → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin)) |
225 | 219, 224 | sylancom 587 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ {𝑗 ∈ 𝑉 ∣ (𝑗 ∩ 𝑣) ≠ ∅} ∈ Fin)) |
226 | 136, 137,
218, 225 | reximd2a 3240 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) ∧ 𝑥 ∈ 𝑋) → ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ∈ Fin)) |
227 | 226 | ralrimiva 3107 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ∀𝑥 ∈ 𝑋 ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ∈ Fin)) |
228 | 220, 127 | islocfin 22576 |
. . . . . 6
⊢ (ran
(𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = ∪ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∧ ∀𝑥 ∈ 𝑋 ∃𝑣 ∈ 𝐽 (𝑥 ∈ 𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∣ (𝑤 ∩ 𝑣) ≠ ∅} ∈
Fin))) |
229 | 131, 134,
227, 228 | syl3anbrc 1341 |
. . . . 5
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∈ (LocFin‘𝐽)) |
230 | | funeq 6438 |
. . . . . . . 8
⊢ (𝑓 = (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) → (Fun 𝑓 ↔ Fun (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})))) |
231 | | dmeq 5801 |
. . . . . . . . 9
⊢ (𝑓 = (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) → dom 𝑓 = dom (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) |
232 | 231 | sseq1d 3948 |
. . . . . . . 8
⊢ (𝑓 = (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) → (dom 𝑓 ⊆ 𝑈 ↔ dom (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ 𝑈)) |
233 | | rneq 5834 |
. . . . . . . . 9
⊢ (𝑓 = (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) → ran 𝑓 = ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))) |
234 | 233 | sseq1d 3948 |
. . . . . . . 8
⊢ (𝑓 = (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) → (ran 𝑓 ⊆ 𝐽 ↔ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ 𝐽)) |
235 | 230, 232,
234 | 3anbi123d 1434 |
. . . . . . 7
⊢ (𝑓 = (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) → ((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ↔ (Fun (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ 𝐽))) |
236 | 233 | breq1d 5080 |
. . . . . . . 8
⊢ (𝑓 = (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) → (ran 𝑓Ref𝑈 ↔ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))Ref𝑈)) |
237 | 233 | eleq1d 2823 |
. . . . . . . 8
⊢ (𝑓 = (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) → (ran 𝑓 ∈ (LocFin‘𝐽) ↔ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))) |
238 | 236, 237 | anbi12d 630 |
. . . . . . 7
⊢ (𝑓 = (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) → ((ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)) ↔ (ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∈ (LocFin‘𝐽)))) |
239 | 235, 238 | anbi12d 630 |
. . . . . 6
⊢ (𝑓 = (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) → (((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) ↔ ((Fun (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ 𝐽) ∧ (ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))))) |
240 | 124, 239 | spcev 3535 |
. . . . 5
⊢ (((Fun
(𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ⊆ 𝐽) ∧ (ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 ↦ ∪ (◡𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))) |
241 | 8, 13, 28, 130, 229, 240 | syl32anc 1376 |
. . . 4
⊢ (((𝜑 ∧ 𝑔:𝑉⟶𝑈) ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))) |
242 | 241 | expl 457 |
. . 3
⊢ (𝜑 → ((𝑔:𝑉⟶𝑈 ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))) |
243 | 242 | exlimdv 1937 |
. 2
⊢ (𝜑 → (∃𝑔(𝑔:𝑉⟶𝑈 ∧ ∀𝑣 ∈ 𝑉 𝑣 ⊆ (𝑔‘𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))) |
244 | 6, 243 | mpd 15 |
1
⊢ (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓 ⊆ 𝑈 ∧ ran 𝑓 ⊆ 𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))) |