Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  locfinreflem Structured version   Visualization version   GIF version

Theorem locfinreflem 33837
Description: A locally finite refinement of an open cover induces a locally finite open cover with the original index set. This is fact 2 of http://at.yorku.ca/p/a/c/a/02.pdf, it is expressed by exposing a function 𝑓 from the original cover 𝑈, which is taken as the index set. The solution is constructed by building unions, so the same method can be used to prove a similar theorem about closed covers. (Contributed by Thierry Arnoux, 29-Jan-2020.)
Hypotheses
Ref Expression
locfinref.x 𝑋 = 𝐽
locfinref.1 (𝜑𝑈𝐽)
locfinref.2 (𝜑𝑋 = 𝑈)
locfinref.3 (𝜑𝑉𝐽)
locfinref.4 (𝜑𝑉Ref𝑈)
locfinref.5 (𝜑𝑉 ∈ (LocFin‘𝐽))
Assertion
Ref Expression
locfinreflem (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
Distinct variable groups:   𝑓,𝐽   𝑈,𝑓   𝑓,𝑉   𝜑,𝑓
Allowed substitution hint:   𝑋(𝑓)

Proof of Theorem locfinreflem
Dummy variables 𝑔 𝑗 𝑘 𝑢 𝑣 𝑤 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 locfinref.4 . . . 4 (𝜑𝑉Ref𝑈)
2 locfinref.5 . . . . 5 (𝜑𝑉 ∈ (LocFin‘𝐽))
3 reff 33836 . . . . 5 (𝑉 ∈ (LocFin‘𝐽) → (𝑉Ref𝑈 ↔ ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))))
42, 3syl 17 . . . 4 (𝜑 → (𝑉Ref𝑈 ↔ ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))))
51, 4mpbid 232 . . 3 (𝜑 → ( 𝑈 𝑉 ∧ ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))))
65simprd 495 . 2 (𝜑 → ∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)))
7 funmpt 6557 . . . . . 6 Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
87a1i 11 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
9 eqid 2730 . . . . . . 7 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
109dmmptss 6217 . . . . . 6 dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ ran 𝑔
11 frn 6698 . . . . . . 7 (𝑔:𝑉𝑈 → ran 𝑔𝑈)
1211ad2antlr 727 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran 𝑔𝑈)
1310, 12sstrid 3961 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈)
14 locfintop 23415 . . . . . . . . . 10 (𝑉 ∈ (LocFin‘𝐽) → 𝐽 ∈ Top)
152, 14syl 17 . . . . . . . . 9 (𝜑𝐽 ∈ Top)
1615ad3antrrr 730 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → 𝐽 ∈ Top)
17 cnvimass 6056 . . . . . . . . . 10 (𝑔 “ {𝑢}) ⊆ dom 𝑔
18 fdm 6700 . . . . . . . . . . 11 (𝑔:𝑉𝑈 → dom 𝑔 = 𝑉)
1918ad3antlr 731 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → dom 𝑔 = 𝑉)
2017, 19sseqtrid 3992 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ⊆ 𝑉)
21 locfinref.3 . . . . . . . . . 10 (𝜑𝑉𝐽)
2221ad3antrrr 730 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → 𝑉𝐽)
2320, 22sstrd 3960 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ⊆ 𝐽)
24 uniopn 22791 . . . . . . . 8 ((𝐽 ∈ Top ∧ (𝑔 “ {𝑢}) ⊆ 𝐽) → (𝑔 “ {𝑢}) ∈ 𝐽)
2516, 23, 24syl2anc 584 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) → (𝑔 “ {𝑢}) ∈ 𝐽)
2625ralrimiva 3126 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽)
279rnmptss 7098 . . . . . 6 (∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽 → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)
2826, 27syl 17 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)
29 eqid 2730 . . . . . . . . . 10 𝑉 = 𝑉
30 eqid 2730 . . . . . . . . . 10 𝑈 = 𝑈
3129, 30refbas 23404 . . . . . . . . 9 (𝑉Ref𝑈 𝑈 = 𝑉)
321, 31syl 17 . . . . . . . 8 (𝜑 𝑈 = 𝑉)
3332ad2antrr 726 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑈 = 𝑉)
34 nfv 1914 . . . . . . . . . . . . 13 𝑣(𝜑𝑔:𝑉𝑈)
35 nfra1 3262 . . . . . . . . . . . . 13 𝑣𝑣𝑉 𝑣 ⊆ (𝑔𝑣)
3634, 35nfan 1899 . . . . . . . . . . . 12 𝑣((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
37 nfre1 3263 . . . . . . . . . . . 12 𝑣𝑣𝑉 𝑥𝑣
3836, 37nfan 1899 . . . . . . . . . . 11 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣)
39 ffn 6691 . . . . . . . . . . . . . . 15 (𝑔:𝑉𝑈𝑔 Fn 𝑉)
4039ad4antlr 733 . . . . . . . . . . . . . 14 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑔 Fn 𝑉)
41 simplr 768 . . . . . . . . . . . . . 14 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑣𝑉)
42 fnfvelrn 7055 . . . . . . . . . . . . . 14 ((𝑔 Fn 𝑉𝑣𝑉) → (𝑔𝑣) ∈ ran 𝑔)
4340, 41, 42syl2anc 584 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → (𝑔𝑣) ∈ ran 𝑔)
44 ssid 3972 . . . . . . . . . . . . . . 15 𝑣𝑣
4539ad3antlr 731 . . . . . . . . . . . . . . . 16 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑔 Fn 𝑉)
46 eqid 2730 . . . . . . . . . . . . . . . . 17 (𝑔𝑣) = (𝑔𝑣)
47 fniniseg 7035 . . . . . . . . . . . . . . . . . 18 (𝑔 Fn 𝑉 → (𝑣 ∈ (𝑔 “ {(𝑔𝑣)}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = (𝑔𝑣))))
4847biimpar 477 . . . . . . . . . . . . . . . . 17 ((𝑔 Fn 𝑉 ∧ (𝑣𝑉 ∧ (𝑔𝑣) = (𝑔𝑣))) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
4946, 48mpanr2 704 . . . . . . . . . . . . . . . 16 ((𝑔 Fn 𝑉𝑣𝑉) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
5045, 49sylancom 588 . . . . . . . . . . . . . . 15 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑣 ∈ (𝑔 “ {(𝑔𝑣)}))
51 ssuni 4899 . . . . . . . . . . . . . . 15 ((𝑣𝑣𝑣 ∈ (𝑔 “ {(𝑔𝑣)})) → 𝑣 (𝑔 “ {(𝑔𝑣)}))
5244, 50, 51sylancr 587 . . . . . . . . . . . . . 14 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) → 𝑣 (𝑔 “ {(𝑔𝑣)}))
5352sselda 3949 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → 𝑥 (𝑔 “ {(𝑔𝑣)}))
54 sneq 4602 . . . . . . . . . . . . . . . . 17 (𝑢 = (𝑔𝑣) → {𝑢} = {(𝑔𝑣)})
5554imaeq2d 6034 . . . . . . . . . . . . . . . 16 (𝑢 = (𝑔𝑣) → (𝑔 “ {𝑢}) = (𝑔 “ {(𝑔𝑣)}))
5655unieqd 4887 . . . . . . . . . . . . . . 15 (𝑢 = (𝑔𝑣) → (𝑔 “ {𝑢}) = (𝑔 “ {(𝑔𝑣)}))
5756eleq2d 2815 . . . . . . . . . . . . . 14 (𝑢 = (𝑔𝑣) → (𝑥 (𝑔 “ {𝑢}) ↔ 𝑥 (𝑔 “ {(𝑔𝑣)})))
5857rspcev 3591 . . . . . . . . . . . . 13 (((𝑔𝑣) ∈ ran 𝑔𝑥 (𝑔 “ {(𝑔𝑣)})) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
5943, 53, 58syl2anc 584 . . . . . . . . . . . 12 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
6059adantllr 719 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) ∧ 𝑣𝑉) ∧ 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
61 simpr 484 . . . . . . . . . . 11 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) → ∃𝑣𝑉 𝑥𝑣)
6238, 60, 61r19.29af 3247 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑣𝑉 𝑥𝑣) → ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
63 nfv 1914 . . . . . . . . . . . . . 14 𝑣 𝑢 ∈ ran 𝑔
6436, 63nfan 1899 . . . . . . . . . . . . 13 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔)
65 nfv 1914 . . . . . . . . . . . . 13 𝑣 𝑥 (𝑔 “ {𝑢})
6664, 65nfan 1899 . . . . . . . . . . . 12 𝑣((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢}))
6720ad3antrrr 730 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → (𝑔 “ {𝑢}) ⊆ 𝑉)
68 simplr 768 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑣 ∈ (𝑔 “ {𝑢}))
6967, 68sseldd 3950 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑣𝑉)
70 simpr 484 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) ∧ 𝑥𝑣) → 𝑥𝑣)
71 simpr 484 . . . . . . . . . . . . 13 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → 𝑥 (𝑔 “ {𝑢}))
72 eluni2 4878 . . . . . . . . . . . . 13 (𝑥 (𝑔 “ {𝑢}) ↔ ∃𝑣 ∈ (𝑔 “ {𝑢})𝑥𝑣)
7371, 72sylib 218 . . . . . . . . . . . 12 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → ∃𝑣 ∈ (𝑔 “ {𝑢})𝑥𝑣)
7466, 69, 70, 73reximd2a 3248 . . . . . . . . . . 11 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑢 ∈ ran 𝑔) ∧ 𝑥 (𝑔 “ {𝑢})) → ∃𝑣𝑉 𝑥𝑣)
7574r19.29an 3138 . . . . . . . . . 10 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢})) → ∃𝑣𝑉 𝑥𝑣)
7662, 75impbida 800 . . . . . . . . 9 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (∃𝑣𝑉 𝑥𝑣 ↔ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢})))
77 eluni2 4878 . . . . . . . . 9 (𝑥 𝑉 ↔ ∃𝑣𝑉 𝑥𝑣)
78 eliun 4962 . . . . . . . . 9 (𝑥 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ↔ ∃𝑢 ∈ ran 𝑔 𝑥 (𝑔 “ {𝑢}))
7976, 77, 783bitr4g 314 . . . . . . . 8 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (𝑥 𝑉𝑥 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8079eqrdv 2728 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑉 = 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
81 dfiun3g 5934 . . . . . . . 8 (∀𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) ∈ 𝐽 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8226, 81syl 17 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8333, 80, 823eqtrd 2769 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
8411ad3antlr 731 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ran 𝑔𝑈)
85 vex 3454 . . . . . . . . . . 11 𝑤 ∈ V
869elrnmpt 5925 . . . . . . . . . . 11 (𝑤 ∈ V → (𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ↔ ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢})))
8785, 86mp1i 13 . . . . . . . . . 10 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ↔ ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢})))
8887biimpa 476 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢}))
89 ssrexv 4019 . . . . . . . . 9 (ran 𝑔𝑈 → (∃𝑢 ∈ ran 𝑔 𝑤 = (𝑔 “ {𝑢}) → ∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢})))
9084, 88, 89sylc 65 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢}))
91 nfv 1914 . . . . . . . . . 10 𝑢((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
92 nfmpt1 5209 . . . . . . . . . . . 12 𝑢(𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9392nfrn 5919 . . . . . . . . . . 11 𝑢ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9493nfcri 2884 . . . . . . . . . 10 𝑢 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9591, 94nfan 1899 . . . . . . . . 9 𝑢(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
96 simpr 484 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑤 = (𝑔 “ {𝑢}))
97 nfv 1914 . . . . . . . . . . . . . . . 16 𝑣 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
9836, 97nfan 1899 . . . . . . . . . . . . . . 15 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
99 nfv 1914 . . . . . . . . . . . . . . 15 𝑣 𝑢𝑈
10098, 99nfan 1899 . . . . . . . . . . . . . 14 𝑣((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈)
101 nfv 1914 . . . . . . . . . . . . . 14 𝑣 𝑤 = (𝑔 “ {𝑢})
102100, 101nfan 1899 . . . . . . . . . . . . 13 𝑣(((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢}))
103 simp-5r 785 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣))
10439ad5antlr 735 . . . . . . . . . . . . . . . . . . 19 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑔 Fn 𝑉)
105 fniniseg 7035 . . . . . . . . . . . . . . . . . . 19 (𝑔 Fn 𝑉 → (𝑣 ∈ (𝑔 “ {𝑢}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢)))
106104, 105syl 17 . . . . . . . . . . . . . . . . . 18 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑣 ∈ (𝑔 “ {𝑢}) ↔ (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢)))
107106biimpa 476 . . . . . . . . . . . . . . . . 17 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → (𝑣𝑉 ∧ (𝑔𝑣) = 𝑢))
108107simpld 494 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣𝑉)
109 rspa 3227 . . . . . . . . . . . . . . . 16 ((∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣) ∧ 𝑣𝑉) → 𝑣 ⊆ (𝑔𝑣))
110103, 108, 109syl2anc 584 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣 ⊆ (𝑔𝑣))
111107simprd 495 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → (𝑔𝑣) = 𝑢)
112110, 111sseqtrd 3986 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) ∧ 𝑣 ∈ (𝑔 “ {𝑢})) → 𝑣𝑢)
113112ex 412 . . . . . . . . . . . . 13 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑣 ∈ (𝑔 “ {𝑢}) → 𝑣𝑢))
114102, 113ralrimi 3236 . . . . . . . . . . . 12 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → ∀𝑣 ∈ (𝑔 “ {𝑢})𝑣𝑢)
115 unissb 4906 . . . . . . . . . . . 12 ( (𝑔 “ {𝑢}) ⊆ 𝑢 ↔ ∀𝑣 ∈ (𝑔 “ {𝑢})𝑣𝑢)
116114, 115sylibr 234 . . . . . . . . . . 11 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → (𝑔 “ {𝑢}) ⊆ 𝑢)
11796, 116eqsstrd 3984 . . . . . . . . . 10 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) ∧ 𝑢𝑈) ∧ 𝑤 = (𝑔 “ {𝑢})) → 𝑤𝑢)
118117exp31 419 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → (𝑢𝑈 → (𝑤 = (𝑔 “ {𝑢}) → 𝑤𝑢)))
11995, 118reximdai 3240 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → (∃𝑢𝑈 𝑤 = (𝑔 “ {𝑢}) → ∃𝑢𝑈 𝑤𝑢))
12090, 119mpd 15 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))) → ∃𝑢𝑈 𝑤𝑢)
121120ralrimiva 3126 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)
122 vex 3454 . . . . . . . . . 10 𝑔 ∈ V
123122rnex 7889 . . . . . . . . 9 ran 𝑔 ∈ V
124123mptex 7200 . . . . . . . 8 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V
125 rnexg 7881 . . . . . . . 8 ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V)
126124, 125mp1i 13 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V)
127 eqid 2730 . . . . . . . 8 ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
128127, 30isref 23403 . . . . . . 7 (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ V → (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ↔ ( 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)))
129126, 128syl 17 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ↔ ( 𝑈 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))∃𝑢𝑈 𝑤𝑢)))
13083, 121, 129mpbir2and 713 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈)
13115ad2antrr 726 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝐽 ∈ Top)
132 locfinref.2 . . . . . . . 8 (𝜑𝑋 = 𝑈)
133132ad2antrr 726 . . . . . . 7 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑋 = 𝑈)
134133, 83eqtrd 2765 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → 𝑋 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
135 nfv 1914 . . . . . . . . 9 𝑣 𝑥𝑋
13636, 135nfan 1899 . . . . . . . 8 𝑣(((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋)
137 simplr 768 . . . . . . . 8 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)) → 𝑣𝐽)
138 ffun 6694 . . . . . . . . . . . . . 14 (𝑔:𝑉𝑈 → Fun 𝑔)
139138ad6antlr 737 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → Fun 𝑔)
140 imafi 9271 . . . . . . . . . . . . 13 ((Fun 𝑔 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin)
141139, 140sylancom 588 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin)
142 simp3 1138 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → 𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘))
143 sneq 4602 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑢 = 𝑘 → {𝑢} = {𝑘})
144143imaeq2d 6034 . . . . . . . . . . . . . . . . . . . . . 22 (𝑢 = 𝑘 → (𝑔 “ {𝑢}) = (𝑔 “ {𝑘}))
145144unieqd 4887 . . . . . . . . . . . . . . . . . . . . 21 (𝑢 = 𝑘 (𝑔 “ {𝑢}) = (𝑔 “ {𝑘}))
146122cnvex 7904 . . . . . . . . . . . . . . . . . . . . . . 23 𝑔 ∈ V
147 imaexg 7892 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 ∈ V → (𝑔 “ {𝑘}) ∈ V)
148146, 147ax-mp 5 . . . . . . . . . . . . . . . . . . . . . 22 (𝑔 “ {𝑘}) ∈ V
149148uniex 7720 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 “ {𝑘}) ∈ V
150145, 9, 149fvmpt 6971 . . . . . . . . . . . . . . . . . . . 20 (𝑘 ∈ ran 𝑔 → ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘) = (𝑔 “ {𝑘}))
1511503ad2ant2 1134 . . . . . . . . . . . . . . . . . . 19 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘) = (𝑔 “ {𝑘}))
152142, 151eqtrd 2765 . . . . . . . . . . . . . . . . . 18 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → 𝑤 = (𝑔 “ {𝑘}))
153152ineq1d 4185 . . . . . . . . . . . . . . . . 17 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → (𝑤𝑣) = ( (𝑔 “ {𝑘}) ∩ 𝑣))
154153neeq1d 2985 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑘 ∈ ran 𝑔𝑤 = ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))‘𝑘)) → ((𝑤𝑣) ≠ ∅ ↔ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅))
155123a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → ran 𝑔 ∈ V)
156 imaexg 7892 . . . . . . . . . . . . . . . . . . . . 21 (𝑔 ∈ V → (𝑔 “ {𝑢}) ∈ V)
157146, 156ax-mp 5 . . . . . . . . . . . . . . . . . . . 20 (𝑔 “ {𝑢}) ∈ V
158157uniex 7720 . . . . . . . . . . . . . . . . . . 19 (𝑔 “ {𝑢}) ∈ V
159158, 9fnmpti 6664 . . . . . . . . . . . . . . . . . 18 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) Fn ran 𝑔
160 dffn4 6781 . . . . . . . . . . . . . . . . . 18 ((𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) Fn ran 𝑔 ↔ (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
161159, 160mpbi 230 . . . . . . . . . . . . . . . . 17 (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))
162161a1i 11 . . . . . . . . . . . . . . . 16 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})):ran 𝑔onto→ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
163154, 155, 162rabfodom 32441 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑘 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅})
164 sneq 4602 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑢 → {𝑘} = {𝑢})
165164imaeq2d 6034 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑢 → (𝑔 “ {𝑘}) = (𝑔 “ {𝑢}))
166165unieqd 4887 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑢 (𝑔 “ {𝑘}) = (𝑔 “ {𝑢}))
167166ineq1d 4185 . . . . . . . . . . . . . . . . 17 (𝑘 = 𝑢 → ( (𝑔 “ {𝑘}) ∩ 𝑣) = ( (𝑔 “ {𝑢}) ∩ 𝑣))
168167neeq1d 2985 . . . . . . . . . . . . . . . 16 (𝑘 = 𝑢 → (( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅ ↔ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅))
169168cbvrabv 3419 . . . . . . . . . . . . . . 15 {𝑘 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑘}) ∩ 𝑣) ≠ ∅} = {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅}
170163, 169breqtrdi 5151 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅})
171123rabex 5297 . . . . . . . . . . . . . . 15 {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} ∈ V
172 nfv 1914 . . . . . . . . . . . . . . . . . . . . 21 𝑗(((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣)
173 nfrab1 3429 . . . . . . . . . . . . . . . . . . . . . 22 𝑗{𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}
174173nfel1 2909 . . . . . . . . . . . . . . . . . . . . 21 𝑗{𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin
175172, 174nfan 1899 . . . . . . . . . . . . . . . . . . . 20 𝑗((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)
176 nfv 1914 . . . . . . . . . . . . . . . . . . . 20 𝑗 𝑢 ∈ ran 𝑔
177175, 176nfan 1899 . . . . . . . . . . . . . . . . . . 19 𝑗(((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔)
178 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑗( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅
179177, 178nfan 1899 . . . . . . . . . . . . . . . . . 18 𝑗((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅)
180 nfv 1914 . . . . . . . . . . . . . . . . . . 19 𝑗(𝑔𝑘) = 𝑢
181173, 180nfrexw 3289 . . . . . . . . . . . . . . . . . 18 𝑗𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢
18239ad5antlr 735 . . . . . . . . . . . . . . . . . . . . . . 23 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) → 𝑔 Fn 𝑉)
183182ad5antr 734 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑔 Fn 𝑉)
184 simplr 768 . . . . . . . . . . . . . . . . . . . . . 22 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗 ∈ (𝑔 “ {𝑢}))
185 fniniseg 7035 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑔 Fn 𝑉 → (𝑗 ∈ (𝑔 “ {𝑢}) ↔ (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢)))
186185biimpa 476 . . . . . . . . . . . . . . . . . . . . . 22 ((𝑔 Fn 𝑉𝑗 ∈ (𝑔 “ {𝑢})) → (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢))
187183, 184, 186syl2anc 584 . . . . . . . . . . . . . . . . . . . . 21 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑗𝑉 ∧ (𝑔𝑗) = 𝑢))
188187simpld 494 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗𝑉)
189 simpr 484 . . . . . . . . . . . . . . . . . . . 20 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑗𝑣) ≠ ∅)
190 rabid 3430 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ↔ (𝑗𝑉 ∧ (𝑗𝑣) ≠ ∅))
191188, 189, 190sylanbrc 583 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → 𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅})
192187simprd 495 . . . . . . . . . . . . . . . . . . 19 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → (𝑔𝑗) = 𝑢)
193 fveqeq2 6870 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑗 → ((𝑔𝑘) = 𝑢 ↔ (𝑔𝑗) = 𝑢))
194193rspcev 3591 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∧ (𝑔𝑗) = 𝑢) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
195191, 192, 194syl2anc 584 . . . . . . . . . . . . . . . . . 18 (((((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) ∧ 𝑗 ∈ (𝑔 “ {𝑢})) ∧ (𝑗𝑣) ≠ ∅) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
196 uniinn0 32486 . . . . . . . . . . . . . . . . . . . 20 (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ ↔ ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
197196biimpi 216 . . . . . . . . . . . . . . . . . . 19 (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ → ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
198197adantl 481 . . . . . . . . . . . . . . . . . 18 (((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) → ∃𝑗 ∈ (𝑔 “ {𝑢})(𝑗𝑣) ≠ ∅)
199179, 181, 195, 198r19.29af2 3246 . . . . . . . . . . . . . . . . 17 (((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) ∧ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅) → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢)
200199ex 412 . . . . . . . . . . . . . . . 16 ((((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) ∧ 𝑢 ∈ ran 𝑔) → (( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅ → ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢))
201200ss2rabdv 4042 . . . . . . . . . . . . . . 15 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ⊆ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
202 ssdomg 8974 . . . . . . . . . . . . . . 15 ({𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} ∈ V → ({𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ⊆ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢} → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢}))
203171, 201, 202mpsyl 68 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
204 domtr 8981 . . . . . . . . . . . . . 14 (({𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ∧ {𝑢 ∈ ran 𝑔 ∣ ( (𝑔 “ {𝑢}) ∩ 𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢}) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
205170, 203, 204syl2anc 584 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
206182adantr 480 . . . . . . . . . . . . . 14 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → 𝑔 Fn 𝑉)
207 dffn3 6703 . . . . . . . . . . . . . . 15 (𝑔 Fn 𝑉𝑔:𝑉⟶ran 𝑔)
208207biimpi 216 . . . . . . . . . . . . . 14 (𝑔 Fn 𝑉𝑔:𝑉⟶ran 𝑔)
209 ssrab2 4046 . . . . . . . . . . . . . . 15 {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ⊆ 𝑉
210 fimarab 6938 . . . . . . . . . . . . . . 15 ((𝑔:𝑉⟶ran 𝑔 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ⊆ 𝑉) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
211209, 210mpan2 691 . . . . . . . . . . . . . 14 (𝑔:𝑉⟶ran 𝑔 → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
212206, 208, 2113syl 18 . . . . . . . . . . . . 13 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) = {𝑢 ∈ ran 𝑔 ∣ ∃𝑘 ∈ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} (𝑔𝑘) = 𝑢})
213205, 212breqtrrd 5138 . . . . . . . . . . . 12 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}))
214 domfi 9159 . . . . . . . . . . . 12 (((𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅}) ∈ Fin ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ≼ (𝑔 “ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅})) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)
215141, 213, 214syl2anc 584 . . . . . . . . . . 11 (((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)
216215ex 412 . . . . . . . . . 10 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ 𝑥𝑣) → ({𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin → {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
217216imdistanda 571 . . . . . . . . 9 (((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) → ((𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin) → (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)))
218217imp 406 . . . . . . . 8 ((((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) ∧ 𝑣𝐽) ∧ (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)) → (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
219 simplll 774 . . . . . . . . 9 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → 𝜑)
220 locfinref.x . . . . . . . . . . . . 13 𝑋 = 𝐽
221220, 29islocfin 23411 . . . . . . . . . . . 12 (𝑉 ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = 𝑉 ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)))
2222, 221sylib 218 . . . . . . . . . . 11 (𝜑 → (𝐽 ∈ Top ∧ 𝑋 = 𝑉 ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin)))
223222simp3d 1144 . . . . . . . . . 10 (𝜑 → ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
224223r19.21bi 3230 . . . . . . . . 9 ((𝜑𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
225219, 224sylancom 588 . . . . . . . 8 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑗𝑉 ∣ (𝑗𝑣) ≠ ∅} ∈ Fin))
226136, 137, 218, 225reximd2a 3248 . . . . . . 7 ((((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) ∧ 𝑥𝑋) → ∃𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
227226ralrimiva 3126 . . . . . 6 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin))
228220, 127islocfin 23411 . . . . . 6 (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽) ↔ (𝐽 ∈ Top ∧ 𝑋 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ ∀𝑥𝑋𝑣𝐽 (𝑥𝑣 ∧ {𝑤 ∈ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∣ (𝑤𝑣) ≠ ∅} ∈ Fin)))
229131, 134, 227, 228syl3anbrc 1344 . . . . 5 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))
230 funeq 6539 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (Fun 𝑓 ↔ Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))))
231 dmeq 5870 . . . . . . . . 9 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → dom 𝑓 = dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
232231sseq1d 3981 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (dom 𝑓𝑈 ↔ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈))
233 rneq 5903 . . . . . . . . 9 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ran 𝑓 = ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})))
234233sseq1d 3981 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓𝐽 ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽))
235230, 232, 2343anbi123d 1438 . . . . . . 7 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ↔ (Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽)))
236233breq1d 5120 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓Ref𝑈 ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈))
237233eleq1d 2814 . . . . . . . 8 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (ran 𝑓 ∈ (LocFin‘𝐽) ↔ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽)))
238236, 237anbi12d 632 . . . . . . 7 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → ((ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)) ↔ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))))
239235, 238anbi12d 632 . . . . . 6 (𝑓 = (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) → (((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))) ↔ ((Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽) ∧ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽)))))
240124, 239spcev 3575 . . . . 5 (((Fun (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∧ dom (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ⊆ 𝐽) ∧ (ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢}))Ref𝑈 ∧ ran (𝑢 ∈ ran 𝑔 (𝑔 “ {𝑢})) ∈ (LocFin‘𝐽))) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
2418, 13, 28, 130, 229, 240syl32anc 1380 . . . 4 (((𝜑𝑔:𝑉𝑈) ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
242241expl 457 . . 3 (𝜑 → ((𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))))
243242exlimdv 1933 . 2 (𝜑 → (∃𝑔(𝑔:𝑉𝑈 ∧ ∀𝑣𝑉 𝑣 ⊆ (𝑔𝑣)) → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽)))))
2446, 243mpd 15 1 (𝜑 → ∃𝑓((Fun 𝑓 ∧ dom 𝑓𝑈 ∧ ran 𝑓𝐽) ∧ (ran 𝑓Ref𝑈 ∧ ran 𝑓 ∈ (LocFin‘𝐽))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2926  wral 3045  wrex 3054  {crab 3408  Vcvv 3450  cin 3916  wss 3917  c0 4299  {csn 4592   cuni 4874   ciun 4958   class class class wbr 5110  cmpt 5191  ccnv 5640  dom cdm 5641  ran crn 5642  cima 5644  Fun wfun 6508   Fn wfn 6509  wf 6510  ontowfo 6512  cfv 6514  cdom 8919  Fincfn 8921  Topctop 22787  Refcref 23396  LocFinclocfin 23398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-reg 9552  ax-inf2 9601  ax-ac2 10423
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-er 8674  df-en 8922  df-dom 8923  df-fin 8925  df-r1 9724  df-rank 9725  df-card 9899  df-ac 10076  df-top 22788  df-ref 23399  df-locfin 23401
This theorem is referenced by:  locfinref  33838
  Copyright terms: Public domain W3C validator