![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
Ref | Expression |
---|---|
expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: reximd2a 3275 rabeqsnd 4691 tfindsg2 7899 tz7.49c 8502 domssl 9058 domssr 9059 ssenen 9217 pssnn 9234 unfi 9238 unwdomg 9653 cff1 10327 cfsmolem 10339 cfpwsdom 10653 wunex2 10807 mulgt0sr 11174 uzwo 12976 shftfval 15119 fsum2dlem 15818 fprod2dlem 16028 prmpwdvds 16951 ghmqusnsglem2 19321 ghmquskerlem2 19325 quscrng 21316 ring2idlqusb 21343 chfacfscmul0 22885 chfacfpmmul0 22889 tgtop 23001 neitr 23209 bwth 23439 tx1stc 23679 cnextcn 24096 logfac2 27279 2sqmo 27499 outpasch 28781 trgcopyeu 28832 axcontlem12 29008 spanuni 31576 pjnmopi 32180 superpos 32386 atcvat4i 32429 2ndresdju 32667 fpwrelmap 32747 chnind 32983 wrdpmtrlast 33086 nsgqusf1olem2 33407 ssmxidl 33467 r1plmhm 33595 r1pquslmic 33596 ply1degltdimlem 33635 locfinreflem 33786 cmpcref 33796 loop1cycl 35105 fneint 36314 neibastop3 36328 isbasisrelowllem1 37321 isbasisrelowllem2 37322 relowlssretop 37329 finxpreclem6 37362 ralssiun 37373 fin2so 37567 matunitlindflem2 37577 poimirlem26 37606 poimirlem27 37607 heicant 37615 ismblfin 37621 ovoliunnfl 37622 itg2gt0cn 37635 cvrat4 39400 pell14qrexpcl 42823 cantnfresb 43286 liminflimsupxrre 45738 odz2prm2pw 47437 prelrrx2b 48448 opnneilv 48588 intubeu 48656 unilbeu 48657 |
Copyright terms: Public domain | W3C validator |