| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
| Ref | Expression |
|---|---|
| expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reximd2a 3239 rabeqsnd 4623 tfindsg2 7802 tz7.49c 8375 domssl 8930 domssr 8931 ssenen 9075 pssnn 9092 unfi 9095 unwdomg 9495 cff1 10171 cfsmolem 10183 cfpwsdom 10497 wunex2 10651 mulgt0sr 11018 uzwo 12830 shftfval 14995 fsum2dlem 15695 fprod2dlem 15905 prmpwdvds 16834 ghmqusnsglem2 19178 ghmquskerlem2 19182 quscrng 21208 ring2idlqusb 21235 chfacfscmul0 22761 chfacfpmmul0 22765 tgtop 22876 neitr 23083 bwth 23313 tx1stc 23553 cnextcn 23970 logfac2 27144 2sqmo 27364 oldss 27810 outpasch 28718 trgcopyeu 28769 axcontlem12 28938 spanuni 31506 pjnmopi 32110 superpos 32316 atcvat4i 32359 2ndresdju 32606 fpwrelmap 32689 chnind 32966 gsumwun 33031 gsumwrd2dccatlem 33032 wrdpmtrlast 33048 nsgqusf1olem2 33361 ssmxidl 33421 r1plmhm 33551 r1pquslmic 33552 ply1degltdimlem 33594 locfinreflem 33806 cmpcref 33816 loop1cycl 35109 fneint 36321 neibastop3 36335 isbasisrelowllem1 37328 isbasisrelowllem2 37329 relowlssretop 37336 finxpreclem6 37369 ralssiun 37380 fin2so 37586 matunitlindflem2 37596 poimirlem26 37625 poimirlem27 37626 heicant 37634 ismblfin 37640 ovoliunnfl 37641 itg2gt0cn 37654 cvrat4 39422 pell14qrexpcl 42840 cantnfresb 43297 liminflimsupxrre 45799 modlt0b 47348 odz2prm2pw 47548 prelrrx2b 48687 opnneilv 48881 intubeu 48956 unilbeu 48957 |
| Copyright terms: Public domain | W3C validator |