![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
Ref | Expression |
---|---|
expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 |
This theorem is referenced by: reximd2a 3267 rabeqsnd 4674 tfindsg2 7883 tz7.49c 8485 domssl 9037 domssr 9038 ssenen 9190 pssnn 9207 unfi 9210 unwdomg 9622 cff1 10296 cfsmolem 10308 cfpwsdom 10622 wunex2 10776 mulgt0sr 11143 uzwo 12951 shftfval 15106 fsum2dlem 15803 fprod2dlem 16013 prmpwdvds 16938 ghmqusnsglem2 19312 ghmquskerlem2 19316 quscrng 21311 ring2idlqusb 21338 chfacfscmul0 22880 chfacfpmmul0 22884 tgtop 22996 neitr 23204 bwth 23434 tx1stc 23674 cnextcn 24091 logfac2 27276 2sqmo 27496 outpasch 28778 trgcopyeu 28829 axcontlem12 29005 spanuni 31573 pjnmopi 32177 superpos 32383 atcvat4i 32426 2ndresdju 32666 fpwrelmap 32751 chnind 32985 gsumwun 33051 gsumwrd2dccatlem 33052 wrdpmtrlast 33096 nsgqusf1olem2 33422 ssmxidl 33482 r1plmhm 33610 r1pquslmic 33611 ply1degltdimlem 33650 locfinreflem 33801 cmpcref 33811 loop1cycl 35122 fneint 36331 neibastop3 36345 isbasisrelowllem1 37338 isbasisrelowllem2 37339 relowlssretop 37346 finxpreclem6 37379 ralssiun 37390 fin2so 37594 matunitlindflem2 37604 poimirlem26 37633 poimirlem27 37634 heicant 37642 ismblfin 37648 ovoliunnfl 37649 itg2gt0cn 37662 cvrat4 39426 pell14qrexpcl 42855 cantnfresb 43314 liminflimsupxrre 45773 odz2prm2pw 47488 prelrrx2b 48564 opnneilv 48705 intubeu 48773 unilbeu 48774 |
Copyright terms: Public domain | W3C validator |