Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
Ref | Expression |
---|---|
expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: reximd2a 3240 tfindsg2 7683 tz7.49c 8247 ssenen 8887 pssnn 8913 unfi 8917 pssnnOLD 8969 unwdomg 9273 cff1 9945 cfsmolem 9957 cfpwsdom 10271 wunex2 10425 mulgt0sr 10792 uzwo 12580 shftfval 14709 fsum2dlem 15410 fprod2dlem 15618 prmpwdvds 16533 quscrng 20424 chfacfscmul0 21915 chfacfpmmul0 21919 tgtop 22031 neitr 22239 bwth 22469 tx1stc 22709 cnextcn 23126 logfac2 26270 2sqmo 26490 outpasch 27020 trgcopyeu 27071 axcontlem12 27246 spanuni 29807 pjnmopi 30411 superpos 30617 atcvat4i 30660 rabeqsnd 30749 2ndresdju 30887 fpwrelmap 30970 nsgqusf1olem2 31501 ssmxidl 31544 locfinreflem 31692 cmpcref 31702 loop1cycl 32999 fneint 34464 neibastop3 34478 isbasisrelowllem1 35453 isbasisrelowllem2 35454 relowlssretop 35461 finxpreclem6 35494 ralssiun 35505 fin2so 35691 matunitlindflem2 35701 poimirlem26 35730 poimirlem27 35731 heicant 35739 ismblfin 35745 ovoliunnfl 35746 itg2gt0cn 35759 cvrat4 37384 pell14qrexpcl 40605 liminflimsupxrre 43248 odz2prm2pw 44903 prelrrx2b 45948 opnneilv 46090 intubeu 46158 unilbeu 46159 |
Copyright terms: Public domain | W3C validator |