![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
Ref | Expression |
---|---|
expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 421 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 412 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 398 |
This theorem is referenced by: reximd2a 3267 rabeqsnd 4672 tfindsg2 7851 tz7.49c 8446 domssl 8994 domssr 8995 ssenen 9151 pssnn 9168 unfi 9172 pssnnOLD 9265 unwdomg 9579 cff1 10253 cfsmolem 10265 cfpwsdom 10579 wunex2 10733 mulgt0sr 11100 uzwo 12895 shftfval 15017 fsum2dlem 15716 fprod2dlem 15924 prmpwdvds 16837 quscrng 20878 chfacfscmul0 22360 chfacfpmmul0 22364 tgtop 22476 neitr 22684 bwth 22914 tx1stc 23154 cnextcn 23571 logfac2 26720 2sqmo 26940 outpasch 28006 trgcopyeu 28057 axcontlem12 28233 spanuni 30797 pjnmopi 31401 superpos 31607 atcvat4i 31650 2ndresdju 31874 fpwrelmap 31958 nsgqusf1olem2 32525 ghmquskerlem2 32530 ssmxidl 32590 ply1degltdimlem 32707 locfinreflem 32820 cmpcref 32830 loop1cycl 34128 fneint 35233 neibastop3 35247 isbasisrelowllem1 36236 isbasisrelowllem2 36237 relowlssretop 36244 finxpreclem6 36277 ralssiun 36288 fin2so 36475 matunitlindflem2 36485 poimirlem26 36514 poimirlem27 36515 heicant 36523 ismblfin 36529 ovoliunnfl 36530 itg2gt0cn 36543 cvrat4 38314 pell14qrexpcl 41605 cantnfresb 42074 liminflimsupxrre 44533 odz2prm2pw 46231 ring2idlqusb 46795 prelrrx2b 47400 opnneilv 47541 intubeu 47609 unilbeu 47610 |
Copyright terms: Public domain | W3C validator |