Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
Ref | Expression |
---|---|
expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 423 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 414 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 210 df-an 400 |
This theorem is referenced by: reximd2a 3236 tfindsg2 7580 tz7.49c 8097 ssenen 8718 pssnn 8743 unfi 8746 pssnnOLD 8779 unwdomg 9086 cff1 9723 cfsmolem 9735 cfpwsdom 10049 wunex2 10203 mulgt0sr 10570 uzwo 12356 shftfval 14482 fsum2dlem 15178 fprod2dlem 15387 prmpwdvds 16300 quscrng 20086 chfacfscmul0 21563 chfacfpmmul0 21567 tgtop 21678 neitr 21885 bwth 22115 tx1stc 22355 cnextcn 22772 logfac2 25905 2sqmo 26125 outpasch 26653 trgcopyeu 26704 axcontlem12 26873 spanuni 29431 pjnmopi 30035 superpos 30241 atcvat4i 30284 rabeqsnd 30375 2ndresdju 30513 fpwrelmap 30596 nsgqusf1olem2 31124 ssmxidl 31167 locfinreflem 31315 cmpcref 31325 loop1cycl 32619 fneint 34112 neibastop3 34126 isbasisrelowllem1 35078 isbasisrelowllem2 35079 relowlssretop 35086 finxpreclem6 35119 ralssiun 35130 fin2so 35350 matunitlindflem2 35360 poimirlem26 35389 poimirlem27 35390 heicant 35398 ismblfin 35404 ovoliunnfl 35405 itg2gt0cn 35418 cvrat4 37045 pell14qrexpcl 40209 liminflimsupxrre 42853 odz2prm2pw 44476 prelrrx2b 45521 opnneilv 45620 |
Copyright terms: Public domain | W3C validator |