| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
| Ref | Expression |
|---|---|
| expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reximd2a 3255 rabeqsnd 4649 tfindsg2 7865 tz7.49c 8468 domssl 9020 domssr 9021 ssenen 9173 pssnn 9190 unfi 9193 unwdomg 9606 cff1 10280 cfsmolem 10292 cfpwsdom 10606 wunex2 10760 mulgt0sr 11127 uzwo 12935 shftfval 15092 fsum2dlem 15789 fprod2dlem 15999 prmpwdvds 16925 ghmqusnsglem2 19269 ghmquskerlem2 19273 quscrng 21256 ring2idlqusb 21283 chfacfscmul0 22813 chfacfpmmul0 22817 tgtop 22928 neitr 23135 bwth 23365 tx1stc 23605 cnextcn 24022 logfac2 27198 2sqmo 27418 outpasch 28700 trgcopyeu 28751 axcontlem12 28921 spanuni 31492 pjnmopi 32096 superpos 32302 atcvat4i 32345 2ndresdju 32595 fpwrelmap 32680 chnind 32945 gsumwun 33012 gsumwrd2dccatlem 33013 wrdpmtrlast 33057 nsgqusf1olem2 33382 ssmxidl 33442 r1plmhm 33570 r1pquslmic 33571 ply1degltdimlem 33613 locfinreflem 33814 cmpcref 33824 loop1cycl 35117 fneint 36324 neibastop3 36338 isbasisrelowllem1 37331 isbasisrelowllem2 37332 relowlssretop 37339 finxpreclem6 37372 ralssiun 37383 fin2so 37589 matunitlindflem2 37599 poimirlem26 37628 poimirlem27 37629 heicant 37637 ismblfin 37643 ovoliunnfl 37644 itg2gt0cn 37657 cvrat4 39420 pell14qrexpcl 42856 cantnfresb 43314 liminflimsupxrre 45804 odz2prm2pw 47523 prelrrx2b 48608 opnneilv 48790 intubeu 48865 unilbeu 48866 |
| Copyright terms: Public domain | W3C validator |