| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
| Ref | Expression |
|---|---|
| expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reximd2a 3240 rabeqsnd 4620 tfindsg2 7787 tz7.49c 8360 domssl 8915 domssr 8916 ssenen 9059 pssnn 9073 unfi 9075 unwdomg 9465 cff1 10141 cfsmolem 10153 cfpwsdom 10467 wunex2 10621 mulgt0sr 10988 uzwo 12801 shftfval 14969 fsum2dlem 15669 fprod2dlem 15879 prmpwdvds 16808 chnind 18519 ghmqusnsglem2 19186 ghmquskerlem2 19190 quscrng 21213 ring2idlqusb 21240 chfacfscmul0 22766 chfacfpmmul0 22770 tgtop 22881 neitr 23088 bwth 23318 tx1stc 23558 cnextcn 23975 logfac2 27148 2sqmo 27368 oldss 27816 outpasch 28726 trgcopyeu 28777 axcontlem12 28946 spanuni 31514 pjnmopi 32118 superpos 32324 atcvat4i 32367 2ndresdju 32621 fpwrelmap 32706 gsumwun 33035 gsumwrd2dccatlem 33036 wrdpmtrlast 33052 nsgqusf1olem2 33369 ssmxidl 33429 r1plmhm 33560 r1pquslmic 33561 ply1degltdimlem 33625 locfinreflem 33843 cmpcref 33853 loop1cycl 35149 fneint 36361 neibastop3 36375 isbasisrelowllem1 37368 isbasisrelowllem2 37369 relowlssretop 37376 finxpreclem6 37409 ralssiun 37420 fin2so 37626 matunitlindflem2 37636 poimirlem26 37665 poimirlem27 37666 heicant 37674 ismblfin 37680 ovoliunnfl 37681 itg2gt0cn 37694 cvrat4 39461 pell14qrexpcl 42879 cantnfresb 43336 liminflimsupxrre 45834 modlt0b 47373 odz2prm2pw 47573 prelrrx2b 48725 opnneilv 48919 intubeu 48994 unilbeu 48995 |
| Copyright terms: Public domain | W3C validator |