| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
| Ref | Expression |
|---|---|
| expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reximd2a 3256 rabeqsnd 4650 tfindsg2 7862 tz7.49c 8465 domssl 9017 domssr 9018 ssenen 9170 pssnn 9187 unfi 9190 unwdomg 9603 cff1 10277 cfsmolem 10289 cfpwsdom 10603 wunex2 10757 mulgt0sr 11124 uzwo 12932 shftfval 15094 fsum2dlem 15791 fprod2dlem 16001 prmpwdvds 16929 ghmqusnsglem2 19269 ghmquskerlem2 19273 quscrng 21249 ring2idlqusb 21276 chfacfscmul0 22801 chfacfpmmul0 22805 tgtop 22916 neitr 23123 bwth 23353 tx1stc 23593 cnextcn 24010 logfac2 27185 2sqmo 27405 outpasch 28739 trgcopyeu 28790 axcontlem12 28959 spanuni 31530 pjnmopi 32134 superpos 32340 atcvat4i 32383 2ndresdju 32632 fpwrelmap 32715 chnind 32996 gsumwun 33064 gsumwrd2dccatlem 33065 wrdpmtrlast 33109 nsgqusf1olem2 33434 ssmxidl 33494 r1plmhm 33624 r1pquslmic 33625 ply1degltdimlem 33667 locfinreflem 33876 cmpcref 33886 loop1cycl 35164 fneint 36371 neibastop3 36385 isbasisrelowllem1 37378 isbasisrelowllem2 37379 relowlssretop 37386 finxpreclem6 37419 ralssiun 37430 fin2so 37636 matunitlindflem2 37646 poimirlem26 37675 poimirlem27 37676 heicant 37684 ismblfin 37690 ovoliunnfl 37691 itg2gt0cn 37704 cvrat4 39467 pell14qrexpcl 42857 cantnfresb 43315 liminflimsupxrre 45813 odz2prm2pw 47544 prelrrx2b 48661 opnneilv 48850 intubeu 48925 unilbeu 48926 |
| Copyright terms: Public domain | W3C validator |