| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
| Ref | Expression |
|---|---|
| expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reximd2a 3242 rabeqsnd 4621 tfindsg2 7798 tz7.49c 8371 domssl 8926 domssr 8927 ssenen 9070 pssnn 9084 unfi 9086 unwdomg 9476 cff1 10155 cfsmolem 10167 cfpwsdom 10481 wunex2 10635 mulgt0sr 11002 uzwo 12815 shftfval 14983 fsum2dlem 15683 fprod2dlem 15893 prmpwdvds 16822 chnind 18533 ghmqusnsglem2 19199 ghmquskerlem2 19203 quscrng 21226 ring2idlqusb 21253 chfacfscmul0 22779 chfacfpmmul0 22783 tgtop 22894 neitr 23101 bwth 23331 tx1stc 23571 cnextcn 23988 logfac2 27161 2sqmo 27381 oldss 27829 outpasch 28739 trgcopyeu 28790 axcontlem12 28960 spanuni 31531 pjnmopi 32135 superpos 32341 atcvat4i 32384 2ndresdju 32638 fpwrelmap 32723 gsumwun 33052 gsumwrd2dccatlem 33053 wrdpmtrlast 33069 nsgqusf1olem2 33386 ssmxidl 33446 r1plmhm 33577 r1pquslmic 33578 ply1degltdimlem 33642 locfinreflem 33860 cmpcref 33870 loop1cycl 35188 fneint 36399 neibastop3 36413 isbasisrelowllem1 37406 isbasisrelowllem2 37407 relowlssretop 37414 finxpreclem6 37447 ralssiun 37458 fin2so 37653 matunitlindflem2 37663 poimirlem26 37692 poimirlem27 37693 heicant 37701 ismblfin 37707 ovoliunnfl 37708 itg2gt0cn 37721 cvrat4 39548 pell14qrexpcl 42965 cantnfresb 43422 liminflimsupxrre 45920 modlt0b 47468 odz2prm2pw 47668 prelrrx2b 48820 opnneilv 49014 intubeu 49089 unilbeu 49090 |
| Copyright terms: Public domain | W3C validator |