Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
Ref | Expression |
---|---|
expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 420 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 411 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 |
This theorem is referenced by: reximd2a 3245 tfindsg2 7708 tz7.49c 8277 ssenen 8938 pssnn 8951 unfi 8955 pssnnOLD 9040 unwdomg 9343 cff1 10014 cfsmolem 10026 cfpwsdom 10340 wunex2 10494 mulgt0sr 10861 uzwo 12651 shftfval 14781 fsum2dlem 15482 fprod2dlem 15690 prmpwdvds 16605 quscrng 20511 chfacfscmul0 22007 chfacfpmmul0 22011 tgtop 22123 neitr 22331 bwth 22561 tx1stc 22801 cnextcn 23218 logfac2 26365 2sqmo 26585 outpasch 27116 trgcopyeu 27167 axcontlem12 27343 spanuni 29906 pjnmopi 30510 superpos 30716 atcvat4i 30759 rabeqsnd 30848 2ndresdju 30986 fpwrelmap 31068 nsgqusf1olem2 31599 ssmxidl 31642 locfinreflem 31790 cmpcref 31800 loop1cycl 33099 fneint 34537 neibastop3 34551 isbasisrelowllem1 35526 isbasisrelowllem2 35527 relowlssretop 35534 finxpreclem6 35567 ralssiun 35578 fin2so 35764 matunitlindflem2 35774 poimirlem26 35803 poimirlem27 35804 heicant 35812 ismblfin 35818 ovoliunnfl 35819 itg2gt0cn 35832 cvrat4 37457 pell14qrexpcl 40689 liminflimsupxrre 43358 odz2prm2pw 45015 prelrrx2b 46060 opnneilv 46202 intubeu 46270 unilbeu 46271 |
Copyright terms: Public domain | W3C validator |