![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
Ref | Expression |
---|---|
expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 |
This theorem is referenced by: reximd2a 3261 rabeqsnd 4667 tfindsg2 7860 tz7.49c 8460 domssl 9010 domssr 9011 ssenen 9167 pssnn 9184 unfi 9188 pssnnOLD 9281 unwdomg 9599 cff1 10273 cfsmolem 10285 cfpwsdom 10599 wunex2 10753 mulgt0sr 11120 uzwo 12917 shftfval 15041 fsum2dlem 15740 fprod2dlem 15948 prmpwdvds 16864 ghmquskerlem2 19227 quscrng 21164 ring2idlqusb 21189 chfacfscmul0 22747 chfacfpmmul0 22751 tgtop 22863 neitr 23071 bwth 23301 tx1stc 23541 cnextcn 23958 logfac2 27137 2sqmo 27357 outpasch 28546 trgcopyeu 28597 axcontlem12 28773 spanuni 31341 pjnmopi 31945 superpos 32151 atcvat4i 32194 2ndresdju 32418 fpwrelmap 32499 nsgqusf1olem2 33064 ssmxidl 33123 r1plmhm 33212 r1pquslmic 33213 ply1degltdimlem 33252 locfinreflem 33377 cmpcref 33387 loop1cycl 34683 fneint 35768 neibastop3 35782 isbasisrelowllem1 36770 isbasisrelowllem2 36771 relowlssretop 36778 finxpreclem6 36811 ralssiun 36822 fin2so 37015 matunitlindflem2 37025 poimirlem26 37054 poimirlem27 37055 heicant 37063 ismblfin 37069 ovoliunnfl 37070 itg2gt0cn 37083 cvrat4 38853 pell14qrexpcl 42209 cantnfresb 42676 liminflimsupxrre 45128 odz2prm2pw 46826 prelrrx2b 47710 opnneilv 47850 intubeu 47918 unilbeu 47919 |
Copyright terms: Public domain | W3C validator |