![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version |
Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
Ref | Expression |
---|---|
expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
Ref | Expression |
---|---|
expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
2 | 1 | exp31 418 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
3 | 2 | impd 409 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 395 |
This theorem is referenced by: reximd2a 3257 rabeqsnd 4672 tfindsg2 7865 tz7.49c 8465 domssl 9017 domssr 9018 ssenen 9174 pssnn 9191 unfi 9195 pssnnOLD 9288 unwdomg 9607 cff1 10281 cfsmolem 10293 cfpwsdom 10607 wunex2 10761 mulgt0sr 11128 uzwo 12925 shftfval 15049 fsum2dlem 15748 fprod2dlem 15956 prmpwdvds 16872 ghmquskerlem2 19240 quscrng 21179 ring2idlqusb 21204 chfacfscmul0 22790 chfacfpmmul0 22794 tgtop 22906 neitr 23114 bwth 23344 tx1stc 23584 cnextcn 24001 logfac2 27180 2sqmo 27400 outpasch 28615 trgcopyeu 28666 axcontlem12 28842 spanuni 31410 pjnmopi 32014 superpos 32220 atcvat4i 32263 2ndresdju 32492 fpwrelmap 32572 nsgqusf1olem2 33186 ghmqusnsglem2 33192 ssmxidl 33249 r1plmhm 33350 r1pquslmic 33351 ply1degltdimlem 33390 locfinreflem 33511 cmpcref 33521 loop1cycl 34817 fneint 35902 neibastop3 35916 isbasisrelowllem1 36904 isbasisrelowllem2 36905 relowlssretop 36912 finxpreclem6 36945 ralssiun 36956 fin2so 37150 matunitlindflem2 37160 poimirlem26 37189 poimirlem27 37190 heicant 37198 ismblfin 37204 ovoliunnfl 37205 itg2gt0cn 37218 cvrat4 38985 pell14qrexpcl 42352 cantnfresb 42818 liminflimsupxrre 45268 odz2prm2pw 46966 prelrrx2b 47899 opnneilv 48039 intubeu 48107 unilbeu 48108 |
Copyright terms: Public domain | W3C validator |