| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expl | Structured version Visualization version GIF version | ||
| Description: Export a wff from a left conjunct. (Contributed by Jeff Hankins, 28-Aug-2009.) |
| Ref | Expression |
|---|---|
| expl.1 | ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) |
| Ref | Expression |
|---|---|
| expl | ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | expl.1 | . . 3 ⊢ (((𝜑 ∧ 𝜓) ∧ 𝜒) → 𝜃) | |
| 2 | 1 | exp31 419 | . 2 ⊢ (𝜑 → (𝜓 → (𝜒 → 𝜃))) |
| 3 | 2 | impd 410 | 1 ⊢ (𝜑 → ((𝜓 ∧ 𝜒) → 𝜃)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 |
| This theorem is referenced by: reximd2a 3247 rabeqsnd 4633 tfindsg2 7838 tz7.49c 8414 domssl 8969 domssr 8970 ssenen 9115 pssnn 9132 unfi 9135 unwdomg 9537 cff1 10211 cfsmolem 10223 cfpwsdom 10537 wunex2 10691 mulgt0sr 11058 uzwo 12870 shftfval 15036 fsum2dlem 15736 fprod2dlem 15946 prmpwdvds 16875 ghmqusnsglem2 19213 ghmquskerlem2 19217 quscrng 21193 ring2idlqusb 21220 chfacfscmul0 22745 chfacfpmmul0 22749 tgtop 22860 neitr 23067 bwth 23297 tx1stc 23537 cnextcn 23954 logfac2 27128 2sqmo 27348 outpasch 28682 trgcopyeu 28733 axcontlem12 28902 spanuni 31473 pjnmopi 32077 superpos 32283 atcvat4i 32326 2ndresdju 32573 fpwrelmap 32656 chnind 32937 gsumwun 33005 gsumwrd2dccatlem 33006 wrdpmtrlast 33050 nsgqusf1olem2 33385 ssmxidl 33445 r1plmhm 33575 r1pquslmic 33576 ply1degltdimlem 33618 locfinreflem 33830 cmpcref 33840 loop1cycl 35124 fneint 36336 neibastop3 36350 isbasisrelowllem1 37343 isbasisrelowllem2 37344 relowlssretop 37351 finxpreclem6 37384 ralssiun 37395 fin2so 37601 matunitlindflem2 37611 poimirlem26 37640 poimirlem27 37641 heicant 37649 ismblfin 37655 ovoliunnfl 37656 itg2gt0cn 37669 cvrat4 39437 pell14qrexpcl 42855 cantnfresb 43313 liminflimsupxrre 45815 modlt0b 47361 odz2prm2pw 47561 prelrrx2b 48700 opnneilv 48894 intubeu 48969 unilbeu 48970 |
| Copyright terms: Public domain | W3C validator |