![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29af | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3115. See r19.29a 3163, r19.29an 3159 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
Ref | Expression |
---|---|
r19.29af.0 | ⊢ Ⅎ𝑥𝜑 |
r19.29af.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
r19.29af.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
r19.29af | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29af.0 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜒 | |
3 | r19.29af.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
4 | r19.29af.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
5 | 1, 2, 3, 4 | r19.29af2 3265 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 Ⅎwnf 1786 ∈ wcel 2107 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2172 |
This theorem depends on definitions: df-bi 206 df-an 398 df-ex 1783 df-nf 1787 df-ral 3063 df-rex 3072 |
This theorem is referenced by: fsnex 7281 neiptopnei 22636 neitr 22684 utopsnneiplem 23752 isucn2 23784 2sqmo 26940 foresf1o 31742 fsumiunle 32035 nsgqusf1olem3 32526 irngnzply1 32755 reff 32819 locfinreflem 32820 ordtconnlem1 32904 esumrnmpt2 33066 esumgect 33088 esum2dlem 33090 esum2d 33091 esumiun 33092 sigapildsys 33160 oms0 33296 eulerpartlemgvv 33375 breprexplema 33642 stoweidlem27 44743 stoweidlem35 44751 |
Copyright terms: Public domain | W3C validator |