MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29af Structured version   Visualization version   GIF version

Theorem r19.29af 3263
Description: A commonly used pattern based on r19.29 3112. See r19.29a 3160, r19.29an 3156 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.)
Hypotheses
Ref Expression
r19.29af.0 𝑥𝜑
r19.29af.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
r19.29af.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
r19.29af (𝜑𝜒)
Distinct variable group:   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.29af
StepHypRef Expression
1 r19.29af.0 . 2 𝑥𝜑
2 nfv 1915 . 2 𝑥𝜒
3 r19.29af.1 . 2 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
4 r19.29af.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
51, 2, 3, 4r19.29af2 3262 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wnf 1783  wcel 2104  wrex 3068
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-12 2169
This theorem depends on definitions:  df-bi 206  df-an 395  df-ex 1780  df-nf 1784  df-ral 3060  df-rex 3069
This theorem is referenced by:  fsnex  7283  neiptopnei  22856  neitr  22904  utopsnneiplem  23972  isucn2  24004  2sqmo  27176  foresf1o  32009  fsumiunle  32302  nsgqusf1olem3  32800  irngnzply1  33044  reff  33117  locfinreflem  33118  ordtconnlem1  33202  esumrnmpt2  33364  esumgect  33386  esum2dlem  33388  esum2d  33389  esumiun  33390  sigapildsys  33458  oms0  33594  eulerpartlemgvv  33673  breprexplema  33940  stoweidlem27  45041  stoweidlem35  45049
  Copyright terms: Public domain W3C validator