Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29af | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3183. See r19.29a 3217, r19.29an 3216 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
Ref | Expression |
---|---|
r19.29af.0 | ⊢ Ⅎ𝑥𝜑 |
r19.29af.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
r19.29af.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
r19.29af | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29af.0 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1918 | . 2 ⊢ Ⅎ𝑥𝜒 | |
3 | r19.29af.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
4 | r19.29af.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
5 | 1, 2, 3, 4 | r19.29af2 3258 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1787 ∈ wcel 2108 ∃wrex 3064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-12 2173 |
This theorem depends on definitions: df-bi 206 df-an 396 df-ex 1784 df-nf 1788 df-ral 3068 df-rex 3069 |
This theorem is referenced by: fsnex 7135 neiptopnei 22191 neitr 22239 utopsnneiplem 23307 isucn2 23339 2sqmo 26490 foresf1o 30751 fsumiunle 31045 nsgqusf1olem3 31502 reff 31691 locfinreflem 31692 ordtconnlem1 31776 esumrnmpt2 31936 esumgect 31958 esum2dlem 31960 esum2d 31961 esumiun 31962 sigapildsys 32030 oms0 32164 eulerpartlemgvv 32243 breprexplema 32510 stoweidlem27 43458 stoweidlem35 43466 |
Copyright terms: Public domain | W3C validator |