Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29af | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3184. See r19.29a 3218, r19.29an 3217 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
Ref | Expression |
---|---|
r19.29af.0 | ⊢ Ⅎ𝑥𝜑 |
r19.29af.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
r19.29af.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
r19.29af | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29af.0 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1917 | . 2 ⊢ Ⅎ𝑥𝜒 | |
3 | r19.29af.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
4 | r19.29af.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
5 | 1, 2, 3, 4 | r19.29af2 3261 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 Ⅎwnf 1786 ∈ wcel 2106 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-ral 3069 df-rex 3070 |
This theorem is referenced by: fsnex 7155 neiptopnei 22283 neitr 22331 utopsnneiplem 23399 isucn2 23431 2sqmo 26585 foresf1o 30850 fsumiunle 31143 nsgqusf1olem3 31600 reff 31789 locfinreflem 31790 ordtconnlem1 31874 esumrnmpt2 32036 esumgect 32058 esum2dlem 32060 esum2d 32061 esumiun 32062 sigapildsys 32130 oms0 32264 eulerpartlemgvv 32343 breprexplema 32610 stoweidlem27 43568 stoweidlem35 43576 |
Copyright terms: Public domain | W3C validator |