| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29af | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern based on r19.29 3095. See r19.29a 3142, r19.29an 3138 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
| Ref | Expression |
|---|---|
| r19.29af.0 | ⊢ Ⅎ𝑥𝜑 |
| r19.29af.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| r19.29af.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| r19.29af | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29af.0 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 3 | r19.29af.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 4 | r19.29af.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 5 | 1, 2, 3, 4 | r19.29af2 3246 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3054 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3046 df-rex 3055 |
| This theorem is referenced by: fsnex 7261 neiptopnei 23026 neitr 23074 utopsnneiplem 24142 isucn2 24173 2sqmo 27355 foresf1o 32440 fsumiunle 32761 nsgqusf1olem3 33393 irngnzply1 33693 reff 33836 locfinreflem 33837 ordtconnlem1 33921 esumrnmpt2 34065 esumgect 34087 esum2dlem 34089 esum2d 34090 esumiun 34091 sigapildsys 34159 oms0 34295 eulerpartlemgvv 34374 breprexplema 34628 stoweidlem27 46032 stoweidlem35 46040 |
| Copyright terms: Public domain | W3C validator |