MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29af Structured version   Visualization version   GIF version

Theorem r19.29af 3244
Description: A commonly used pattern based on r19.29 3094. See r19.29a 3141, r19.29an 3137 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.)
Hypotheses
Ref Expression
r19.29af.0 𝑥𝜑
r19.29af.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
r19.29af.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
r19.29af (𝜑𝜒)
Distinct variable group:   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.29af
StepHypRef Expression
1 r19.29af.0 . 2 𝑥𝜑
2 nfv 1914 . 2 𝑥𝜒
3 r19.29af.1 . 2 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
4 r19.29af.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
51, 2, 3, 4r19.29af2 3243 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wrex 3053
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3045  df-rex 3054
This theorem is referenced by:  fsnex  7240  neiptopnei  22995  neitr  23043  utopsnneiplem  24111  isucn2  24142  2sqmo  27324  foresf1o  32406  fsumiunle  32727  nsgqusf1olem3  33359  irngnzply1  33659  reff  33802  locfinreflem  33803  ordtconnlem1  33887  esumrnmpt2  34031  esumgect  34053  esum2dlem  34055  esum2d  34056  esumiun  34057  sigapildsys  34125  oms0  34261  eulerpartlemgvv  34340  breprexplema  34594  stoweidlem27  45998  stoweidlem35  46006
  Copyright terms: Public domain W3C validator