![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > r19.29af | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3120. See r19.29a 3168, r19.29an 3164 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
Ref | Expression |
---|---|
r19.29af.0 | ⊢ Ⅎ𝑥𝜑 |
r19.29af.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
r19.29af.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
r19.29af | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29af.0 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1913 | . 2 ⊢ Ⅎ𝑥𝜒 | |
3 | r19.29af.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
4 | r19.29af.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
5 | 1, 2, 3, 4 | r19.29af2 3273 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1781 ∈ wcel 2108 ∃wrex 3076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-12 2178 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-nf 1782 df-ral 3068 df-rex 3077 |
This theorem is referenced by: fsnex 7319 neiptopnei 23161 neitr 23209 utopsnneiplem 24277 isucn2 24309 2sqmo 27499 foresf1o 32532 fsumiunle 32833 nsgqusf1olem3 33408 irngnzply1 33691 reff 33785 locfinreflem 33786 ordtconnlem1 33870 esumrnmpt2 34032 esumgect 34054 esum2dlem 34056 esum2d 34057 esumiun 34058 sigapildsys 34126 oms0 34262 eulerpartlemgvv 34341 breprexplema 34607 stoweidlem27 45948 stoweidlem35 45956 |
Copyright terms: Public domain | W3C validator |