| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29af | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern based on r19.29 3095. See r19.29a 3140, r19.29an 3136 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
| Ref | Expression |
|---|---|
| r19.29af.0 | ⊢ Ⅎ𝑥𝜑 |
| r19.29af.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| r19.29af.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| r19.29af | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29af.0 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 3 | r19.29af.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 4 | r19.29af.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 5 | 1, 2, 3, 4 | r19.29af2 3240 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1784 ∈ wcel 2111 ∃wrex 3056 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-12 2180 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1781 df-nf 1785 df-ral 3048 df-rex 3057 |
| This theorem is referenced by: fsnex 7217 neiptopnei 23047 neitr 23095 utopsnneiplem 24162 isucn2 24193 2sqmo 27375 foresf1o 32484 fsumiunle 32812 nsgqusf1olem3 33380 irngnzply1 33704 reff 33852 locfinreflem 33853 ordtconnlem1 33937 esumrnmpt2 34081 esumgect 34103 esum2dlem 34105 esum2d 34106 esumiun 34107 sigapildsys 34175 oms0 34310 eulerpartlemgvv 34389 breprexplema 34643 stoweidlem27 46073 stoweidlem35 46081 |
| Copyright terms: Public domain | W3C validator |