MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29af Structured version   Visualization version   GIF version

Theorem r19.29af 3267
Description: A commonly used pattern based on r19.29 3113. See r19.29a 3161, r19.29an 3157 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.)
Hypotheses
Ref Expression
r19.29af.0 𝑥𝜑
r19.29af.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
r19.29af.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
r19.29af (𝜑𝜒)
Distinct variable group:   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.29af
StepHypRef Expression
1 r19.29af.0 . 2 𝑥𝜑
2 nfv 1913 . 2 𝑥𝜒
3 r19.29af.1 . 2 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
4 r19.29af.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
51, 2, 3, 4r19.29af2 3266 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1782  wcel 2107  wrex 3069
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-12 2176
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1779  df-nf 1783  df-ral 3061  df-rex 3070
This theorem is referenced by:  fsnex  7304  neiptopnei  23141  neitr  23189  utopsnneiplem  24257  isucn2  24289  2sqmo  27482  foresf1o  32524  fsumiunle  32832  nsgqusf1olem3  33444  irngnzply1  33742  reff  33839  locfinreflem  33840  ordtconnlem1  33924  esumrnmpt2  34070  esumgect  34092  esum2dlem  34094  esum2d  34095  esumiun  34096  sigapildsys  34164  oms0  34300  eulerpartlemgvv  34379  breprexplema  34646  stoweidlem27  46047  stoweidlem35  46055
  Copyright terms: Public domain W3C validator