MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29af Structured version   Visualization version   GIF version

Theorem r19.29af 3262
Description: A commonly used pattern based on r19.29 3184. See r19.29a 3218, r19.29an 3217 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.)
Hypotheses
Ref Expression
r19.29af.0 𝑥𝜑
r19.29af.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
r19.29af.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
r19.29af (𝜑𝜒)
Distinct variable group:   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.29af
StepHypRef Expression
1 r19.29af.0 . 2 𝑥𝜑
2 nfv 1917 . 2 𝑥𝜒
3 r19.29af.1 . 2 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
4 r19.29af.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
51, 2, 3, 4r19.29af2 3261 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wnf 1786  wcel 2106  wrex 3065
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-12 2171
This theorem depends on definitions:  df-bi 206  df-an 397  df-ex 1783  df-nf 1787  df-ral 3069  df-rex 3070
This theorem is referenced by:  fsnex  7155  neiptopnei  22283  neitr  22331  utopsnneiplem  23399  isucn2  23431  2sqmo  26585  foresf1o  30850  fsumiunle  31143  nsgqusf1olem3  31600  reff  31789  locfinreflem  31790  ordtconnlem1  31874  esumrnmpt2  32036  esumgect  32058  esum2dlem  32060  esum2d  32061  esumiun  32062  sigapildsys  32130  oms0  32264  eulerpartlemgvv  32343  breprexplema  32610  stoweidlem27  43568  stoweidlem35  43576
  Copyright terms: Public domain W3C validator