Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > r19.29af | Structured version Visualization version GIF version |
Description: A commonly used pattern based on r19.29 3181. See r19.29a 3213, r19.29an 3212 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
Ref | Expression |
---|---|
r19.29af.0 | ⊢ Ⅎ𝑥𝜑 |
r19.29af.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
r19.29af.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
Ref | Expression |
---|---|
r19.29af | ⊢ (𝜑 → 𝜒) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | r19.29af.0 | . 2 ⊢ Ⅎ𝑥𝜑 | |
2 | nfv 1915 | . 2 ⊢ Ⅎ𝑥𝜒 | |
3 | r19.29af.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
4 | r19.29af.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
5 | 1, 2, 3, 4 | r19.29af2 3253 | 1 ⊢ (𝜑 → 𝜒) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 Ⅎwnf 1785 ∈ wcel 2111 ∃wrex 3071 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-12 2175 |
This theorem depends on definitions: df-bi 210 df-an 400 df-ex 1782 df-nf 1786 df-ral 3075 df-rex 3076 |
This theorem is referenced by: fsnex 7031 neiptopnei 21832 neitr 21880 utopsnneiplem 22948 isucn2 22980 2sqmo 26120 foresf1o 30372 fsumiunle 30667 nsgqusf1olem3 31121 reff 31310 locfinreflem 31311 ordtconnlem1 31395 esumrnmpt2 31555 esumgect 31577 esum2dlem 31579 esum2d 31580 esumiun 31581 sigapildsys 31649 oms0 31783 eulerpartlemgvv 31862 breprexplema 32129 stoweidlem27 43035 stoweidlem35 43043 |
Copyright terms: Public domain | W3C validator |