| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29af | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern based on r19.29 3094. See r19.29a 3141, r19.29an 3137 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
| Ref | Expression |
|---|---|
| r19.29af.0 | ⊢ Ⅎ𝑥𝜑 |
| r19.29af.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| r19.29af.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| r19.29af | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29af.0 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 3 | r19.29af.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 4 | r19.29af.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 5 | 1, 2, 3, 4 | r19.29af2 3243 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: fsnex 7240 neiptopnei 22995 neitr 23043 utopsnneiplem 24111 isucn2 24142 2sqmo 27324 foresf1o 32406 fsumiunle 32727 nsgqusf1olem3 33359 irngnzply1 33659 reff 33802 locfinreflem 33803 ordtconnlem1 33887 esumrnmpt2 34031 esumgect 34053 esum2dlem 34055 esum2d 34056 esumiun 34057 sigapildsys 34125 oms0 34261 eulerpartlemgvv 34340 breprexplema 34594 stoweidlem27 45998 stoweidlem35 46006 |
| Copyright terms: Public domain | W3C validator |