| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > r19.29af | Structured version Visualization version GIF version | ||
| Description: A commonly used pattern based on r19.29 3094. See r19.29a 3141, r19.29an 3137 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.) |
| Ref | Expression |
|---|---|
| r19.29af.0 | ⊢ Ⅎ𝑥𝜑 |
| r19.29af.1 | ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) |
| r19.29af.2 | ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) |
| Ref | Expression |
|---|---|
| r19.29af | ⊢ (𝜑 → 𝜒) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | r19.29af.0 | . 2 ⊢ Ⅎ𝑥𝜑 | |
| 2 | nfv 1914 | . 2 ⊢ Ⅎ𝑥𝜒 | |
| 3 | r19.29af.1 | . 2 ⊢ (((𝜑 ∧ 𝑥 ∈ 𝐴) ∧ 𝜓) → 𝜒) | |
| 4 | r19.29af.2 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 𝜓) | |
| 5 | 1, 2, 3, 4 | r19.29af2 3243 | 1 ⊢ (𝜑 → 𝜒) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 Ⅎwnf 1783 ∈ wcel 2109 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: fsnex 7240 neiptopnei 23052 neitr 23100 utopsnneiplem 24168 isucn2 24199 2sqmo 27381 foresf1o 32483 fsumiunle 32804 nsgqusf1olem3 33379 irngnzply1 33679 reff 33822 locfinreflem 33823 ordtconnlem1 33907 esumrnmpt2 34051 esumgect 34073 esum2dlem 34075 esum2d 34076 esumiun 34077 sigapildsys 34145 oms0 34281 eulerpartlemgvv 34360 breprexplema 34614 stoweidlem27 46018 stoweidlem35 46026 |
| Copyright terms: Public domain | W3C validator |