MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  r19.29af Structured version   Visualization version   GIF version

Theorem r19.29af 3255
Description: A commonly used pattern based on r19.29 3102. See r19.29a 3149, r19.29an 3145 for a variant when 𝑥 is disjoint from 𝜑. (Contributed by Thierry Arnoux, 29-Nov-2017.)
Hypotheses
Ref Expression
r19.29af.0 𝑥𝜑
r19.29af.1 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
r19.29af.2 (𝜑 → ∃𝑥𝐴 𝜓)
Assertion
Ref Expression
r19.29af (𝜑𝜒)
Distinct variable group:   𝜒,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑥)   𝐴(𝑥)

Proof of Theorem r19.29af
StepHypRef Expression
1 r19.29af.0 . 2 𝑥𝜑
2 nfv 1914 . 2 𝑥𝜒
3 r19.29af.1 . 2 (((𝜑𝑥𝐴) ∧ 𝜓) → 𝜒)
4 r19.29af.2 . 2 (𝜑 → ∃𝑥𝐴 𝜓)
51, 2, 3, 4r19.29af2 3254 1 (𝜑𝜒)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wnf 1783  wcel 2109  wrex 3061
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-an 396  df-ex 1780  df-nf 1784  df-ral 3053  df-rex 3062
This theorem is referenced by:  fsnex  7281  neiptopnei  23075  neitr  23123  utopsnneiplem  24191  isucn2  24222  2sqmo  27405  foresf1o  32490  fsumiunle  32813  nsgqusf1olem3  33435  irngnzply1  33737  reff  33875  locfinreflem  33876  ordtconnlem1  33960  esumrnmpt2  34104  esumgect  34126  esum2dlem  34128  esum2d  34129  esumiun  34130  sigapildsys  34198  oms0  34334  eulerpartlemgvv  34413  breprexplema  34667  stoweidlem27  46023  stoweidlem35  46031
  Copyright terms: Public domain W3C validator