| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexlimd2 | Structured version Visualization version GIF version | ||
| Description: Version of rexlimd 3266 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
| Ref | Expression |
|---|---|
| rexlimd2.1 | ⊢ Ⅎ𝑥𝜑 |
| rexlimd2.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
| rexlimd2.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
| Ref | Expression |
|---|---|
| rexlimd2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexlimd2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rexlimd2.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
| 3 | 1, 2 | ralrimi 3257 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
| 4 | rexlimd2.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
| 5 | r19.23t 3255 | . . 3 ⊢ (Ⅎ𝑥𝜒 → (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒))) | |
| 6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒))) |
| 7 | 3, 6 | mpbid 232 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 Ⅎwnf 1783 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-12 2177 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1780 df-nf 1784 df-ral 3062 df-rex 3071 |
| This theorem is referenced by: rexlimd 3266 sbcrext 3873 |
| Copyright terms: Public domain | W3C validator |