Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexlimd2 | Structured version Visualization version GIF version |
Description: Version of rexlimd 3248 with deduction version of second hypothesis. (Contributed by NM, 21-Jul-2013.) (Revised by Mario Carneiro, 8-Oct-2016.) |
Ref | Expression |
---|---|
rexlimd2.1 | ⊢ Ⅎ𝑥𝜑 |
rexlimd2.2 | ⊢ (𝜑 → Ⅎ𝑥𝜒) |
rexlimd2.3 | ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) |
Ref | Expression |
---|---|
rexlimd2 | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexlimd2.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | rexlimd2.3 | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝐴 → (𝜓 → 𝜒))) | |
3 | 1, 2 | ralrimi 3140 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 (𝜓 → 𝜒)) |
4 | rexlimd2.2 | . . 3 ⊢ (𝜑 → Ⅎ𝑥𝜒) | |
5 | r19.23t 3244 | . . 3 ⊢ (Ⅎ𝑥𝜒 → (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒))) | |
6 | 4, 5 | syl 17 | . 2 ⊢ (𝜑 → (∀𝑥 ∈ 𝐴 (𝜓 → 𝜒) ↔ (∃𝑥 ∈ 𝐴 𝜓 → 𝜒))) |
7 | 3, 6 | mpbid 231 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 → 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 Ⅎwnf 1786 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-12 2171 |
This theorem depends on definitions: df-bi 206 df-an 397 df-ex 1783 df-nf 1787 df-ral 3069 df-rex 3070 |
This theorem is referenced by: rexlimd 3248 sbcrext 3806 |
Copyright terms: Public domain | W3C validator |