MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimd Structured version   Visualization version   GIF version

Theorem ralrimd 3235
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) For a version based on fewer axioms see ralrimdv 3128. (Contributed by NM, 16-Feb-2004.)
Hypotheses
Ref Expression
ralrimd.1 𝑥𝜑
ralrimd.2 𝑥𝜓
ralrimd.3 (𝜑 → (𝜓 → (𝑥𝐴𝜒)))
Assertion
Ref Expression
ralrimd (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ralrimd
StepHypRef Expression
1 ralrimd.1 . . 3 𝑥𝜑
2 ralrimd.2 . . 3 𝑥𝜓
3 ralrimd.3 . . 3 (𝜑 → (𝜓 → (𝑥𝐴𝜒)))
41, 2, 3alrimd 2217 . 2 (𝜑 → (𝜓 → ∀𝑥(𝑥𝐴𝜒)))
5 df-ral 3046 . 2 (∀𝑥𝐴 𝜒 ↔ ∀𝑥(𝑥𝐴𝜒))
64, 5imbitrrdi 252 1 (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1539  wnf 1784  wcel 2110  wral 3045
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-12 2179
This theorem depends on definitions:  df-bi 207  df-ex 1781  df-nf 1785  df-ral 3046
This theorem is referenced by:  reusv2lem3  5336  fliftfun  7241  mapxpen  9051  domtriomlem  10325  dedekind  11268  fzrevral  13504  matunitlindflem2  37636  riotasv3d  38978  ssralv2  44543  setrec1lem2  49699
  Copyright terms: Public domain W3C validator