Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ralrimd | Structured version Visualization version GIF version |
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) (Contributed by NM, 16-Feb-2004.) |
Ref | Expression |
---|---|
ralrimd.1 | ⊢ Ⅎ𝑥𝜑 |
ralrimd.2 | ⊢ Ⅎ𝑥𝜓 |
ralrimd.3 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
Ref | Expression |
---|---|
ralrimd | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ralrimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
2 | ralrimd.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
3 | ralrimd.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
4 | 1, 2, 3 | alrimd 2212 | . 2 ⊢ (𝜑 → (𝜓 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜒))) |
5 | df-ral 3071 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒)) | |
6 | 4, 5 | syl6ibr 251 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1540 Ⅎwnf 1790 ∈ wcel 2110 ∀wral 3066 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-12 2175 |
This theorem depends on definitions: df-bi 206 df-ex 1787 df-nf 1791 df-ral 3071 |
This theorem is referenced by: reusv2lem3 5327 fliftfun 7180 mapxpen 8921 domtriomlem 10209 dedekind 11149 fzrevral 13352 matunitlindflem2 35783 riotasv3d 36983 ssralv2 42133 setrec1lem2 46373 |
Copyright terms: Public domain | W3C validator |