| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ralrimd | Structured version Visualization version GIF version | ||
| Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) For a version based on fewer axioms see ralrimdv 3139. (Contributed by NM, 16-Feb-2004.) |
| Ref | Expression |
|---|---|
| ralrimd.1 | ⊢ Ⅎ𝑥𝜑 |
| ralrimd.2 | ⊢ Ⅎ𝑥𝜓 |
| ralrimd.3 | ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) |
| Ref | Expression |
|---|---|
| ralrimd | ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralrimd.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | ralrimd.2 | . . 3 ⊢ Ⅎ𝑥𝜓 | |
| 3 | ralrimd.3 | . . 3 ⊢ (𝜑 → (𝜓 → (𝑥 ∈ 𝐴 → 𝜒))) | |
| 4 | 1, 2, 3 | alrimd 2216 | . 2 ⊢ (𝜑 → (𝜓 → ∀𝑥(𝑥 ∈ 𝐴 → 𝜒))) |
| 5 | df-ral 3053 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝜒 ↔ ∀𝑥(𝑥 ∈ 𝐴 → 𝜒)) | |
| 6 | 4, 5 | imbitrrdi 252 | 1 ⊢ (𝜑 → (𝜓 → ∀𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∀wal 1538 Ⅎwnf 1783 ∈ wcel 2109 ∀wral 3052 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-12 2178 |
| This theorem depends on definitions: df-bi 207 df-ex 1780 df-nf 1784 df-ral 3053 |
| This theorem is referenced by: reusv2lem3 5375 fliftfun 7310 mapxpen 9162 domtriomlem 10461 dedekind 11403 fzrevral 13634 matunitlindflem2 37646 riotasv3d 38983 ssralv2 44523 setrec1lem2 49519 |
| Copyright terms: Public domain | W3C validator |