MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ralrimd Structured version   Visualization version   GIF version

Theorem ralrimd 3270
Description: Inference from Theorem 19.21 of [Margaris] p. 90. (Restricted quantifier version.) For a version based on fewer axioms see ralrimdv 3158. (Contributed by NM, 16-Feb-2004.)
Hypotheses
Ref Expression
ralrimd.1 𝑥𝜑
ralrimd.2 𝑥𝜓
ralrimd.3 (𝜑 → (𝜓 → (𝑥𝐴𝜒)))
Assertion
Ref Expression
ralrimd (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))

Proof of Theorem ralrimd
StepHypRef Expression
1 ralrimd.1 . . 3 𝑥𝜑
2 ralrimd.2 . . 3 𝑥𝜓
3 ralrimd.3 . . 3 (𝜑 → (𝜓 → (𝑥𝐴𝜒)))
41, 2, 3alrimd 2216 . 2 (𝜑 → (𝜓 → ∀𝑥(𝑥𝐴𝜒)))
5 df-ral 3068 . 2 (∀𝑥𝐴 𝜒 ↔ ∀𝑥(𝑥𝐴𝜒))
64, 5imbitrrdi 252 1 (𝜑 → (𝜓 → ∀𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wal 1535  wnf 1781  wcel 2108  wral 3067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-12 2178
This theorem depends on definitions:  df-bi 207  df-ex 1778  df-nf 1782  df-ral 3068
This theorem is referenced by:  reusv2lem3  5418  fliftfun  7348  mapxpen  9209  domtriomlem  10511  dedekind  11453  fzrevral  13669  matunitlindflem2  37577  riotasv3d  38916  ssralv2  44502  setrec1lem2  48780
  Copyright terms: Public domain W3C validator