Proof of Theorem sbcrext
Step | Hyp | Ref
| Expression |
1 | | sbcex 3721 |
. . 3
⊢
([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V) |
2 | 1 | a1i 11 |
. 2
⊢
(Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 → 𝐴 ∈ V)) |
3 | | nfnfc1 2909 |
. . 3
⊢
Ⅎ𝑦Ⅎ𝑦𝐴 |
4 | | id 22 |
. . . 4
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦𝐴) |
5 | | nfcvd 2907 |
. . . 4
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦V) |
6 | 4, 5 | nfeld 2917 |
. . 3
⊢
(Ⅎ𝑦𝐴 → Ⅎ𝑦 𝐴 ∈ V) |
7 | | sbcex 3721 |
. . . 4
⊢
([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V) |
8 | 7 | 2a1i 12 |
. . 3
⊢
(Ⅎ𝑦𝐴 → (𝑦 ∈ 𝐵 → ([𝐴 / 𝑥]𝜑 → 𝐴 ∈ V))) |
9 | 3, 6, 8 | rexlimd2 3244 |
. 2
⊢
(Ⅎ𝑦𝐴 → (∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑 → 𝐴 ∈ V)) |
10 | | sbcng 3761 |
. . . . . 6
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]∀𝑦 ∈ 𝐵 ¬ 𝜑)) |
11 | 10 | adantl 481 |
. . . . 5
⊢
((Ⅎ𝑦𝐴 ∧ 𝐴 ∈ V) → ([𝐴 / 𝑥] ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]∀𝑦 ∈ 𝐵 ¬ 𝜑)) |
12 | | sbcralt 3801 |
. . . . . . . 8
⊢ ((𝐴 ∈ V ∧
Ⅎ𝑦𝐴) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥] ¬ 𝜑)) |
13 | 12 | ancoms 458 |
. . . . . . 7
⊢
((Ⅎ𝑦𝐴 ∧ 𝐴 ∈ V) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 [𝐴 / 𝑥] ¬ 𝜑)) |
14 | 3, 6 | nfan1 2196 |
. . . . . . . 8
⊢
Ⅎ𝑦(Ⅎ𝑦𝐴 ∧ 𝐴 ∈ V) |
15 | | sbcng 3761 |
. . . . . . . . 9
⊢ (𝐴 ∈ V → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) |
16 | 15 | adantl 481 |
. . . . . . . 8
⊢
((Ⅎ𝑦𝐴 ∧ 𝐴 ∈ V) → ([𝐴 / 𝑥] ¬ 𝜑 ↔ ¬ [𝐴 / 𝑥]𝜑)) |
17 | 14, 16 | ralbid 3158 |
. . . . . . 7
⊢
((Ⅎ𝑦𝐴 ∧ 𝐴 ∈ V) → (∀𝑦 ∈ 𝐵 [𝐴 / 𝑥] ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ¬ [𝐴 / 𝑥]𝜑)) |
18 | 13, 17 | bitrd 278 |
. . . . . 6
⊢
((Ⅎ𝑦𝐴 ∧ 𝐴 ∈ V) → ([𝐴 / 𝑥]∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ∀𝑦 ∈ 𝐵 ¬ [𝐴 / 𝑥]𝜑)) |
19 | 18 | notbid 317 |
. . . . 5
⊢
((Ⅎ𝑦𝐴 ∧ 𝐴 ∈ V) → (¬ [𝐴 / 𝑥]∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ [𝐴 / 𝑥]𝜑)) |
20 | 11, 19 | bitrd 278 |
. . . 4
⊢
((Ⅎ𝑦𝐴 ∧ 𝐴 ∈ V) → ([𝐴 / 𝑥] ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ [𝐴 / 𝑥]𝜑)) |
21 | | dfrex2 3166 |
. . . . 5
⊢
(∃𝑦 ∈
𝐵 𝜑 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜑) |
22 | 21 | sbcbii 3772 |
. . . 4
⊢
([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ [𝐴 / 𝑥] ¬ ∀𝑦 ∈ 𝐵 ¬ 𝜑) |
23 | | dfrex2 3166 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 [𝐴 / 𝑥]𝜑 ↔ ¬ ∀𝑦 ∈ 𝐵 ¬ [𝐴 / 𝑥]𝜑) |
24 | 20, 22, 23 | 3bitr4g 313 |
. . 3
⊢
((Ⅎ𝑦𝐴 ∧ 𝐴 ∈ V) → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |
25 | 24 | ex 412 |
. 2
⊢
(Ⅎ𝑦𝐴 → (𝐴 ∈ V → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑))) |
26 | 2, 9, 25 | pm5.21ndd 380 |
1
⊢
(Ⅎ𝑦𝐴 → ([𝐴 / 𝑥]∃𝑦 ∈ 𝐵 𝜑 ↔ ∃𝑦 ∈ 𝐵 [𝐴 / 𝑥]𝜑)) |