Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexxfr3d Structured version   Visualization version   GIF version

Theorem rexxfr3d 35606
Description: Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by SN, 20-Jun-2025.)
Hypotheses
Ref Expression
rexxfr3d.s (𝑥 = 𝑋 → (𝜓𝜒))
rexxfr3d.x (𝜑 → (𝑥𝐴 ↔ ∃𝑦𝐵 𝑥 = 𝑋))
rexxfr3d.a (𝜑𝑋𝑉)
Assertion
Ref Expression
rexxfr3d (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥   𝑥,𝑋   𝑥,𝐵   𝑥,𝐴,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐵(𝑦)   𝑉(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem rexxfr3d
StepHypRef Expression
1 rexxfr3d.a . . 3 (𝜑𝑋𝑉)
21adantr 480 . 2 ((𝜑𝑦𝐵) → 𝑋𝑉)
3 rexxfr3d.x . 2 (𝜑 → (𝑥𝐴 ↔ ∃𝑦𝐵 𝑥 = 𝑋))
4 rexxfr3d.s . . 3 (𝑥 = 𝑋 → (𝜓𝜒))
54adantl 481 . 2 ((𝜑𝑥 = 𝑋) → (𝜓𝜒))
62, 3, 5rexxfr2d 5429 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1537  wcel 2108  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-12 2178  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077
This theorem is referenced by:  ellcsrspsn  35609
  Copyright terms: Public domain W3C validator