|   | Mathbox for Mario Carneiro | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rexxfr3d | Structured version Visualization version GIF version | ||
| Description: Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by SN, 20-Jun-2025.) | 
| Ref | Expression | 
|---|---|
| rexxfr3d.s | ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | 
| rexxfr3d.x | ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) | 
| rexxfr3d.a | ⊢ (𝜑 → 𝑋 ∈ 𝑉) | 
| Ref | Expression | 
|---|---|
| rexxfr3d | ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rexxfr3d.a | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 2 | 1 | adantr 480 | . 2 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐵) → 𝑋 ∈ 𝑉) | 
| 3 | rexxfr3d.x | . 2 ⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) | |
| 4 | rexxfr3d.s | . . 3 ⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) | |
| 5 | 4 | adantl 481 | . 2 ⊢ ((𝜑 ∧ 𝑥 = 𝑋) → (𝜓 ↔ 𝜒)) | 
| 6 | 2, 3, 5 | rexxfr2d 5410 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-12 2176 ax-ext 2707 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1542 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ral 3061 df-rex 3070 | 
| This theorem is referenced by: ellcsrspsn 35647 | 
| Copyright terms: Public domain | W3C validator |