| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexxfr2d | Structured version Visualization version GIF version | ||
| Description: Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.) |
| Ref | Expression |
|---|---|
| ralxfr2d.1 | ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) |
| ralxfr2d.2 | ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) |
| ralxfr2d.3 | ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexxfr2d | ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralxfr2d.1 | . . . 4 ⊢ ((𝜑 ∧ 𝑦 ∈ 𝐶) → 𝐴 ∈ 𝑉) | |
| 2 | ralxfr2d.2 | . . . 4 ⊢ (𝜑 → (𝑥 ∈ 𝐵 ↔ ∃𝑦 ∈ 𝐶 𝑥 = 𝐴)) | |
| 3 | ralxfr2d.3 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (𝜓 ↔ 𝜒)) | |
| 4 | 3 | notbid 318 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 = 𝐴) → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 5 | 1, 2, 4 | ralxfr2d 5365 | . . 3 ⊢ (𝜑 → (∀𝑥 ∈ 𝐵 ¬ 𝜓 ↔ ∀𝑦 ∈ 𝐶 ¬ 𝜒)) |
| 6 | 5 | notbid 318 | . 2 ⊢ (𝜑 → (¬ ∀𝑥 ∈ 𝐵 ¬ 𝜓 ↔ ¬ ∀𝑦 ∈ 𝐶 ¬ 𝜒)) |
| 7 | dfrex2 3056 | . 2 ⊢ (∃𝑥 ∈ 𝐵 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐵 ¬ 𝜓) | |
| 8 | dfrex2 3056 | . 2 ⊢ (∃𝑦 ∈ 𝐶 𝜒 ↔ ¬ ∀𝑦 ∈ 𝐶 ¬ 𝜒) | |
| 9 | 6, 7, 8 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝜓 ↔ ∃𝑦 ∈ 𝐶 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2701 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1543 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 |
| This theorem is referenced by: rexrn 7059 reximaOLD 7213 cnpresti 23175 cnprest 23176 1stcrest 23340 subislly 23368 txrest 23518 trfil2 23774 met1stc 24409 metucn 24459 xrlimcnp 26878 esumlub 34050 esumfsup 34060 rexxfr3d 35625 ptrest 37613 djhcvat42 41409 |
| Copyright terms: Public domain | W3C validator |