MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexxfr2d Structured version   Visualization version   GIF version

Theorem rexxfr2d 5369
Description: Transfer existential quantification from a variable 𝑥 to another variable 𝑦 contained in expression 𝐴. (Contributed by Mario Carneiro, 20-Aug-2014.) (Proof shortened by Mario Carneiro, 19-Nov-2016.)
Hypotheses
Ref Expression
ralxfr2d.1 ((𝜑𝑦𝐶) → 𝐴𝑉)
ralxfr2d.2 (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))
ralxfr2d.3 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rexxfr2d (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑥,𝑦,𝐵   𝑥,𝐶   𝜒,𝑥   𝜑,𝑥,𝑦   𝜓,𝑦
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑦)   𝐶(𝑦)   𝑉(𝑥,𝑦)

Proof of Theorem rexxfr2d
StepHypRef Expression
1 ralxfr2d.1 . . . 4 ((𝜑𝑦𝐶) → 𝐴𝑉)
2 ralxfr2d.2 . . . 4 (𝜑 → (𝑥𝐵 ↔ ∃𝑦𝐶 𝑥 = 𝐴))
3 ralxfr2d.3 . . . . 5 ((𝜑𝑥 = 𝐴) → (𝜓𝜒))
43notbid 318 . . . 4 ((𝜑𝑥 = 𝐴) → (¬ 𝜓 ↔ ¬ 𝜒))
51, 2, 4ralxfr2d 5368 . . 3 (𝜑 → (∀𝑥𝐵 ¬ 𝜓 ↔ ∀𝑦𝐶 ¬ 𝜒))
65notbid 318 . 2 (𝜑 → (¬ ∀𝑥𝐵 ¬ 𝜓 ↔ ¬ ∀𝑦𝐶 ¬ 𝜒))
7 dfrex2 3057 . 2 (∃𝑥𝐵 𝜓 ↔ ¬ ∀𝑥𝐵 ¬ 𝜓)
8 dfrex2 3057 . 2 (∃𝑦𝐶 𝜒 ↔ ¬ ∀𝑦𝐶 ¬ 𝜒)
96, 7, 83bitr4g 314 1 (𝜑 → (∃𝑥𝐵 𝜓 ↔ ∃𝑦𝐶 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wral 3045  wrex 3054
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2702
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055
This theorem is referenced by:  rexrn  7062  reximaOLD  7216  cnpresti  23182  cnprest  23183  1stcrest  23347  subislly  23375  txrest  23525  trfil2  23781  met1stc  24416  metucn  24466  xrlimcnp  26885  esumlub  34057  esumfsup  34067  rexxfr3d  35632  ptrest  37620  djhcvat42  41416
  Copyright terms: Public domain W3C validator