|   | Mathbox for Mario Carneiro | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellcsrspsn | Structured version Visualization version GIF version | ||
| Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19198 and elrspsn 21251. (Contributed by SN, 19-Jun-2025.) | 
| Ref | Expression | 
|---|---|
| ellcsrspsn.b | ⊢ 𝐵 = (Base‘𝑅) | 
| ellcsrspsn.p | ⊢ + = (+g‘𝑅) | 
| ellcsrspsn.t | ⊢ · = (.r‘𝑅) | 
| ellcsrspsn.e | ⊢ ∼ = (𝑅 ~QG 𝐼) | 
| ellcsrspsn.u | ⊢ 𝑈 = (𝑅 /s ∼ ) | 
| ellcsrspsn.i | ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) | 
| ellcsrspsn.r | ⊢ (𝜑 → 𝑅 ∈ Ring) | 
| ellcsrspsn.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) | 
| ellcsrspsn.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) | 
| Ref | Expression | 
|---|---|
| ellcsrspsn | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | ellcsrspsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) | |
| 2 | ellcsrspsn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 3 | ellcsrspsn.e | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 4 | ellcsrspsn.u | . . . . 5 ⊢ 𝑈 = (𝑅 /s ∼ ) | |
| 5 | ellcsrspsn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 3, 4, 5 | quselbas 19203 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑈)) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) | 
| 7 | 2, 1, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) | 
| 8 | 1, 7 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ ) | 
| 9 | 2 | ringgrpd 20240 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Grp) | 
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Grp) | 
| 11 | ellcsrspsn.i | . . . . . . . . 9 ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) | |
| 12 | eqid 2736 | . . . . . . . . . 10 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
| 13 | ellcsrspsn.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 14 | 13 | snssd 4808 | . . . . . . . . . 10 ⊢ (𝜑 → {𝑀} ⊆ 𝐵) | 
| 15 | 12, 5, 2, 14 | rspssbasd 35646 | . . . . . . . . 9 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑀}) ⊆ 𝐵) | 
| 16 | 11, 15 | eqsstrid 4021 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) | 
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ⊆ 𝐵) | 
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 19 | ellcsrspsn.p | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
| 20 | 5, 3, 19 | eqglact 19198 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼)) | 
| 21 | 10, 17, 18, 20 | syl3anc 1372 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼)) | 
| 22 | eqid 2736 | . . . . . . . . 9 ⊢ (𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) = (𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) | |
| 23 | vex 3483 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
| 24 | 23 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑧 ∈ V) | 
| 25 | 22, 24, 17 | elimampt 6060 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑖 ∈ 𝐼 𝑧 = (𝑥 + 𝑖))) | 
| 26 | oveq2 7440 | . . . . . . . . . 10 ⊢ (𝑖 = (𝑦 · 𝑀) → (𝑥 + 𝑖) = (𝑥 + (𝑦 · 𝑀))) | |
| 27 | 26 | eqeq2d 2747 | . . . . . . . . 9 ⊢ (𝑖 = (𝑦 · 𝑀) → (𝑧 = (𝑥 + 𝑖) ↔ 𝑧 = (𝑥 + (𝑦 · 𝑀)))) | 
| 28 | 11 | eleq2i 2832 | . . . . . . . . . . 11 ⊢ (𝑖 ∈ 𝐼 ↔ 𝑖 ∈ ((RSpan‘𝑅)‘{𝑀})) | 
| 29 | ellcsrspsn.t | . . . . . . . . . . . . 13 ⊢ · = (.r‘𝑅) | |
| 30 | 5, 29, 12 | elrspsn 21251 | . . . . . . . . . . . 12 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) | 
| 31 | 2, 13, 30 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) | 
| 32 | 28, 31 | bitrid 283 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑖 ∈ 𝐼 ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) | 
| 33 | 32 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑖 ∈ 𝐼 ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) | 
| 34 | ovexd 7467 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 · 𝑀) ∈ V) | |
| 35 | 27, 33, 34 | rexxfr3d 35644 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑖 ∈ 𝐼 𝑧 = (𝑥 + 𝑖) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀)))) | 
| 36 | 25, 35 | bitrd 279 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀)))) | 
| 37 | 36 | eqabdv 2874 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}) | 
| 38 | 21, 37 | eqtrd 2776 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}) | 
| 39 | eqeq1 2740 | . . . . 5 ⊢ (𝑋 = [𝑥] ∼ → (𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))} ↔ [𝑥] ∼ = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) | |
| 40 | 38, 39 | syl5ibrcom 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑋 = [𝑥] ∼ → 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) | 
| 41 | 40 | ancld 550 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑋 = [𝑥] ∼ → (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))) | 
| 42 | 41 | reximdva 3167 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))) | 
| 43 | 8, 42 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 {cab 2713 ∃wrex 3069 Vcvv 3479 ⊆ wss 3950 {csn 4625 ↦ cmpt 5224 “ cima 5687 ‘cfv 6560 (class class class)co 7432 [cec 8744 Basecbs 17248 +gcplusg 17298 .rcmulr 17299 /s cqus 17551 Grpcgrp 18952 ~QG cqg 19141 Ringcrg 20231 RSpancrsp 21218 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5278 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-tp 4630 df-op 4632 df-uni 4907 df-int 4946 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-1st 8015 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-1o 8507 df-er 8746 df-ec 8748 df-qs 8752 df-en 8987 df-dom 8988 df-sdom 8989 df-fin 8990 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-3 12331 df-4 12332 df-5 12333 df-6 12334 df-7 12335 df-8 12336 df-9 12337 df-n0 12529 df-z 12616 df-dec 12736 df-uz 12880 df-fz 13549 df-struct 17185 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-ress 17276 df-plusg 17311 df-mulr 17312 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-0g 17487 df-imas 17554 df-qus 17555 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-grp 18955 df-minusg 18956 df-sbg 18957 df-subg 19142 df-eqg 19144 df-mgp 20139 df-ur 20180 df-ring 20233 df-subrg 20571 df-lmod 20861 df-lss 20931 df-lsp 20971 df-sra 21173 df-rgmod 21174 df-lidl 21219 df-rsp 21220 | 
| This theorem is referenced by: r1peuqusdeg1 35649 | 
| Copyright terms: Public domain | W3C validator |