Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellcsrspsn Structured version   Visualization version   GIF version

Theorem ellcsrspsn 35668
Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19167 and elrspsn 21206. (Contributed by SN, 19-Jun-2025.)
Hypotheses
Ref Expression
ellcsrspsn.b 𝐵 = (Base‘𝑅)
ellcsrspsn.p + = (+g𝑅)
ellcsrspsn.t · = (.r𝑅)
ellcsrspsn.e = (𝑅 ~QG 𝐼)
ellcsrspsn.u 𝑈 = (𝑅 /s )
ellcsrspsn.i 𝐼 = ((RSpan‘𝑅)‘{𝑀})
ellcsrspsn.r (𝜑𝑅 ∈ Ring)
ellcsrspsn.m (𝜑𝑀𝐵)
ellcsrspsn.x (𝜑𝑋 ∈ (Base‘𝑈))
Assertion
Ref Expression
ellcsrspsn (𝜑 → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑦,𝑅   𝑦,𝐼,𝑧   𝑦,𝑀   𝑥,𝑋,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,   𝑦, + ,𝑧   𝑦, ·
Allowed substitution hints:   + (𝑥)   (𝑦,𝑧)   𝑅(𝑥,𝑧)   · (𝑥,𝑧)   𝑈(𝑥,𝑦,𝑧)   𝐼(𝑥)   𝑀(𝑥,𝑧)   𝑋(𝑦)

Proof of Theorem ellcsrspsn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ellcsrspsn.x . . 3 (𝜑𝑋 ∈ (Base‘𝑈))
2 ellcsrspsn.r . . . 4 (𝜑𝑅 ∈ Ring)
3 ellcsrspsn.e . . . . 5 = (𝑅 ~QG 𝐼)
4 ellcsrspsn.u . . . . 5 𝑈 = (𝑅 /s )
5 ellcsrspsn.b . . . . 5 𝐵 = (Base‘𝑅)
63, 4, 5quselbas 19172 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑈)) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥𝐵 𝑋 = [𝑥] ))
72, 1, 6syl2anc 584 . . 3 (𝜑 → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥𝐵 𝑋 = [𝑥] ))
81, 7mpbid 232 . 2 (𝜑 → ∃𝑥𝐵 𝑋 = [𝑥] )
92ringgrpd 20207 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
109adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑅 ∈ Grp)
11 ellcsrspsn.i . . . . . . . . 9 𝐼 = ((RSpan‘𝑅)‘{𝑀})
12 eqid 2736 . . . . . . . . . 10 (RSpan‘𝑅) = (RSpan‘𝑅)
13 ellcsrspsn.m . . . . . . . . . . 11 (𝜑𝑀𝐵)
1413snssd 4790 . . . . . . . . . 10 (𝜑 → {𝑀} ⊆ 𝐵)
1512, 5, 2, 14rspssbasd 35667 . . . . . . . . 9 (𝜑 → ((RSpan‘𝑅)‘{𝑀}) ⊆ 𝐵)
1611, 15eqsstrid 4002 . . . . . . . 8 (𝜑𝐼𝐵)
1716adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐼𝐵)
18 simpr 484 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝐵)
19 ellcsrspsn.p . . . . . . . 8 + = (+g𝑅)
205, 3, 19eqglact 19167 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐼𝐵𝑥𝐵) → [𝑥] = ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼))
2110, 17, 18, 20syl3anc 1373 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥] = ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼))
22 eqid 2736 . . . . . . . . 9 (𝑖𝐵 ↦ (𝑥 + 𝑖)) = (𝑖𝐵 ↦ (𝑥 + 𝑖))
23 vex 3468 . . . . . . . . . 10 𝑧 ∈ V
2423a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑧 ∈ V)
2522, 24, 17elimampt 6035 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑧 ∈ ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑖𝐼 𝑧 = (𝑥 + 𝑖)))
26 oveq2 7418 . . . . . . . . . 10 (𝑖 = (𝑦 · 𝑀) → (𝑥 + 𝑖) = (𝑥 + (𝑦 · 𝑀)))
2726eqeq2d 2747 . . . . . . . . 9 (𝑖 = (𝑦 · 𝑀) → (𝑧 = (𝑥 + 𝑖) ↔ 𝑧 = (𝑥 + (𝑦 · 𝑀))))
2811eleq2i 2827 . . . . . . . . . . 11 (𝑖𝐼𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}))
29 ellcsrspsn.t . . . . . . . . . . . . 13 · = (.r𝑅)
305, 29, 12elrspsn 21206 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
312, 13, 30syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
3228, 31bitrid 283 . . . . . . . . . 10 (𝜑 → (𝑖𝐼 ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
3332adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑖𝐼 ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
34 ovexd 7445 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑦 · 𝑀) ∈ V)
3527, 33, 34rexxfr3d 35665 . . . . . . . 8 ((𝜑𝑥𝐵) → (∃𝑖𝐼 𝑧 = (𝑥 + 𝑖) ↔ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))))
3625, 35bitrd 279 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑧 ∈ ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))))
3736eqabdv 2869 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})
3821, 37eqtrd 2771 . . . . 5 ((𝜑𝑥𝐵) → [𝑥] = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})
39 eqeq1 2740 . . . . 5 (𝑋 = [𝑥] → (𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))} ↔ [𝑥] = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
4038, 39syl5ibrcom 247 . . . 4 ((𝜑𝑥𝐵) → (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
4140ancld 550 . . 3 ((𝜑𝑥𝐵) → (𝑋 = [𝑥] → (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})))
4241reximdva 3154 . 2 (𝜑 → (∃𝑥𝐵 𝑋 = [𝑥] → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})))
438, 42mpd 15 1 (𝜑 → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2714  wrex 3061  Vcvv 3464  wss 3931  {csn 4606  cmpt 5206  cima 5662  cfv 6536  (class class class)co 7410  [cec 8722  Basecbs 17233  +gcplusg 17276  .rcmulr 17277   /s cqus 17524  Grpcgrp 18921   ~QG cqg 19110  Ringcrg 20198  RSpancrsp 21173
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-tp 4611  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-ec 8726  df-qs 8730  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-5 12311  df-6 12312  df-7 12313  df-8 12314  df-9 12315  df-n0 12507  df-z 12594  df-dec 12714  df-uz 12858  df-fz 13530  df-struct 17171  df-sets 17188  df-slot 17206  df-ndx 17218  df-base 17234  df-ress 17257  df-plusg 17289  df-mulr 17290  df-sca 17292  df-vsca 17293  df-ip 17294  df-tset 17295  df-ple 17296  df-ds 17298  df-0g 17460  df-imas 17527  df-qus 17528  df-mgm 18623  df-sgrp 18702  df-mnd 18718  df-grp 18924  df-minusg 18925  df-sbg 18926  df-subg 19111  df-eqg 19113  df-mgp 20106  df-ur 20147  df-ring 20200  df-subrg 20535  df-lmod 20824  df-lss 20894  df-lsp 20934  df-sra 21136  df-rgmod 21137  df-lidl 21174  df-rsp 21175
This theorem is referenced by:  r1peuqusdeg1  35670
  Copyright terms: Public domain W3C validator