| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellcsrspsn | Structured version Visualization version GIF version | ||
| Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19167 and elrspsn 21206. (Contributed by SN, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| ellcsrspsn.b | ⊢ 𝐵 = (Base‘𝑅) |
| ellcsrspsn.p | ⊢ + = (+g‘𝑅) |
| ellcsrspsn.t | ⊢ · = (.r‘𝑅) |
| ellcsrspsn.e | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| ellcsrspsn.u | ⊢ 𝑈 = (𝑅 /s ∼ ) |
| ellcsrspsn.i | ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) |
| ellcsrspsn.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ellcsrspsn.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| ellcsrspsn.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
| Ref | Expression |
|---|---|
| ellcsrspsn | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellcsrspsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) | |
| 2 | ellcsrspsn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 3 | ellcsrspsn.e | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 4 | ellcsrspsn.u | . . . . 5 ⊢ 𝑈 = (𝑅 /s ∼ ) | |
| 5 | ellcsrspsn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 3, 4, 5 | quselbas 19172 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑈)) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) |
| 7 | 2, 1, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) |
| 8 | 1, 7 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ ) |
| 9 | 2 | ringgrpd 20207 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 11 | ellcsrspsn.i | . . . . . . . . 9 ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) | |
| 12 | eqid 2736 | . . . . . . . . . 10 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
| 13 | ellcsrspsn.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 14 | 13 | snssd 4790 | . . . . . . . . . 10 ⊢ (𝜑 → {𝑀} ⊆ 𝐵) |
| 15 | 12, 5, 2, 14 | rspssbasd 35667 | . . . . . . . . 9 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑀}) ⊆ 𝐵) |
| 16 | 11, 15 | eqsstrid 4002 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ⊆ 𝐵) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 19 | ellcsrspsn.p | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
| 20 | 5, 3, 19 | eqglact 19167 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼)) |
| 21 | 10, 17, 18, 20 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼)) |
| 22 | eqid 2736 | . . . . . . . . 9 ⊢ (𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) = (𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) | |
| 23 | vex 3468 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
| 24 | 23 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑧 ∈ V) |
| 25 | 22, 24, 17 | elimampt 6035 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑖 ∈ 𝐼 𝑧 = (𝑥 + 𝑖))) |
| 26 | oveq2 7418 | . . . . . . . . . 10 ⊢ (𝑖 = (𝑦 · 𝑀) → (𝑥 + 𝑖) = (𝑥 + (𝑦 · 𝑀))) | |
| 27 | 26 | eqeq2d 2747 | . . . . . . . . 9 ⊢ (𝑖 = (𝑦 · 𝑀) → (𝑧 = (𝑥 + 𝑖) ↔ 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
| 28 | 11 | eleq2i 2827 | . . . . . . . . . . 11 ⊢ (𝑖 ∈ 𝐼 ↔ 𝑖 ∈ ((RSpan‘𝑅)‘{𝑀})) |
| 29 | ellcsrspsn.t | . . . . . . . . . . . . 13 ⊢ · = (.r‘𝑅) | |
| 30 | 5, 29, 12 | elrspsn 21206 | . . . . . . . . . . . 12 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
| 31 | 2, 13, 30 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
| 32 | 28, 31 | bitrid 283 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑖 ∈ 𝐼 ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
| 33 | 32 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑖 ∈ 𝐼 ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
| 34 | ovexd 7445 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 · 𝑀) ∈ V) | |
| 35 | 27, 33, 34 | rexxfr3d 35665 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑖 ∈ 𝐼 𝑧 = (𝑥 + 𝑖) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
| 36 | 25, 35 | bitrd 279 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
| 37 | 36 | eqabdv 2869 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}) |
| 38 | 21, 37 | eqtrd 2771 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}) |
| 39 | eqeq1 2740 | . . . . 5 ⊢ (𝑋 = [𝑥] ∼ → (𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))} ↔ [𝑥] ∼ = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) | |
| 40 | 38, 39 | syl5ibrcom 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑋 = [𝑥] ∼ → 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
| 41 | 40 | ancld 550 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑋 = [𝑥] ∼ → (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))) |
| 42 | 41 | reximdva 3154 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))) |
| 43 | 8, 42 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2714 ∃wrex 3061 Vcvv 3464 ⊆ wss 3931 {csn 4606 ↦ cmpt 5206 “ cima 5662 ‘cfv 6536 (class class class)co 7410 [cec 8722 Basecbs 17233 +gcplusg 17276 .rcmulr 17277 /s cqus 17524 Grpcgrp 18921 ~QG cqg 19110 Ringcrg 20198 RSpancrsp 21173 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 ax-cnex 11190 ax-resscn 11191 ax-1cn 11192 ax-icn 11193 ax-addcl 11194 ax-addrcl 11195 ax-mulcl 11196 ax-mulrcl 11197 ax-mulcom 11198 ax-addass 11199 ax-mulass 11200 ax-distr 11201 ax-i2m1 11202 ax-1ne0 11203 ax-1rid 11204 ax-rnegex 11205 ax-rrecex 11206 ax-cnre 11207 ax-pre-lttri 11208 ax-pre-lttrn 11209 ax-pre-ltadd 11210 ax-pre-mulgt0 11211 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-nel 3038 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-iun 4974 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-pred 6295 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-om 7867 df-1st 7993 df-2nd 7994 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8724 df-ec 8726 df-qs 8730 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-sup 9459 df-inf 9460 df-pnf 11276 df-mnf 11277 df-xr 11278 df-ltxr 11279 df-le 11280 df-sub 11473 df-neg 11474 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12507 df-z 12594 df-dec 12714 df-uz 12858 df-fz 13530 df-struct 17171 df-sets 17188 df-slot 17206 df-ndx 17218 df-base 17234 df-ress 17257 df-plusg 17289 df-mulr 17290 df-sca 17292 df-vsca 17293 df-ip 17294 df-tset 17295 df-ple 17296 df-ds 17298 df-0g 17460 df-imas 17527 df-qus 17528 df-mgm 18623 df-sgrp 18702 df-mnd 18718 df-grp 18924 df-minusg 18925 df-sbg 18926 df-subg 19111 df-eqg 19113 df-mgp 20106 df-ur 20147 df-ring 20200 df-subrg 20535 df-lmod 20824 df-lss 20894 df-lsp 20934 df-sra 21136 df-rgmod 21137 df-lidl 21174 df-rsp 21175 |
| This theorem is referenced by: r1peuqusdeg1 35670 |
| Copyright terms: Public domain | W3C validator |