| Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ellcsrspsn | Structured version Visualization version GIF version | ||
| Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19118 and elrspsn 21157. (Contributed by SN, 19-Jun-2025.) |
| Ref | Expression |
|---|---|
| ellcsrspsn.b | ⊢ 𝐵 = (Base‘𝑅) |
| ellcsrspsn.p | ⊢ + = (+g‘𝑅) |
| ellcsrspsn.t | ⊢ · = (.r‘𝑅) |
| ellcsrspsn.e | ⊢ ∼ = (𝑅 ~QG 𝐼) |
| ellcsrspsn.u | ⊢ 𝑈 = (𝑅 /s ∼ ) |
| ellcsrspsn.i | ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) |
| ellcsrspsn.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| ellcsrspsn.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
| ellcsrspsn.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
| Ref | Expression |
|---|---|
| ellcsrspsn | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ellcsrspsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) | |
| 2 | ellcsrspsn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
| 3 | ellcsrspsn.e | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
| 4 | ellcsrspsn.u | . . . . 5 ⊢ 𝑈 = (𝑅 /s ∼ ) | |
| 5 | ellcsrspsn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
| 6 | 3, 4, 5 | quselbas 19123 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑈)) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) |
| 7 | 2, 1, 6 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) |
| 8 | 1, 7 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ ) |
| 9 | 2 | ringgrpd 20158 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Grp) |
| 10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Grp) |
| 11 | ellcsrspsn.i | . . . . . . . . 9 ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) | |
| 12 | eqid 2730 | . . . . . . . . . 10 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
| 13 | ellcsrspsn.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
| 14 | 13 | snssd 4776 | . . . . . . . . . 10 ⊢ (𝜑 → {𝑀} ⊆ 𝐵) |
| 15 | 12, 5, 2, 14 | rspssbasd 35634 | . . . . . . . . 9 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑀}) ⊆ 𝐵) |
| 16 | 11, 15 | eqsstrid 3988 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
| 17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ⊆ 𝐵) |
| 18 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
| 19 | ellcsrspsn.p | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
| 20 | 5, 3, 19 | eqglact 19118 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼)) |
| 21 | 10, 17, 18, 20 | syl3anc 1373 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼)) |
| 22 | eqid 2730 | . . . . . . . . 9 ⊢ (𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) = (𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) | |
| 23 | vex 3454 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
| 24 | 23 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑧 ∈ V) |
| 25 | 22, 24, 17 | elimampt 6017 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑖 ∈ 𝐼 𝑧 = (𝑥 + 𝑖))) |
| 26 | oveq2 7398 | . . . . . . . . . 10 ⊢ (𝑖 = (𝑦 · 𝑀) → (𝑥 + 𝑖) = (𝑥 + (𝑦 · 𝑀))) | |
| 27 | 26 | eqeq2d 2741 | . . . . . . . . 9 ⊢ (𝑖 = (𝑦 · 𝑀) → (𝑧 = (𝑥 + 𝑖) ↔ 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
| 28 | 11 | eleq2i 2821 | . . . . . . . . . . 11 ⊢ (𝑖 ∈ 𝐼 ↔ 𝑖 ∈ ((RSpan‘𝑅)‘{𝑀})) |
| 29 | ellcsrspsn.t | . . . . . . . . . . . . 13 ⊢ · = (.r‘𝑅) | |
| 30 | 5, 29, 12 | elrspsn 21157 | . . . . . . . . . . . 12 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
| 31 | 2, 13, 30 | syl2anc 584 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
| 32 | 28, 31 | bitrid 283 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑖 ∈ 𝐼 ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
| 33 | 32 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑖 ∈ 𝐼 ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
| 34 | ovexd 7425 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 · 𝑀) ∈ V) | |
| 35 | 27, 33, 34 | rexxfr3d 35632 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑖 ∈ 𝐼 𝑧 = (𝑥 + 𝑖) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
| 36 | 25, 35 | bitrd 279 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
| 37 | 36 | eqabdv 2862 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}) |
| 38 | 21, 37 | eqtrd 2765 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}) |
| 39 | eqeq1 2734 | . . . . 5 ⊢ (𝑋 = [𝑥] ∼ → (𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))} ↔ [𝑥] ∼ = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) | |
| 40 | 38, 39 | syl5ibrcom 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑋 = [𝑥] ∼ → 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
| 41 | 40 | ancld 550 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑋 = [𝑥] ∼ → (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))) |
| 42 | 41 | reximdva 3147 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))) |
| 43 | 8, 42 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {cab 2708 ∃wrex 3054 Vcvv 3450 ⊆ wss 3917 {csn 4592 ↦ cmpt 5191 “ cima 5644 ‘cfv 6514 (class class class)co 7390 [cec 8672 Basecbs 17186 +gcplusg 17227 .rcmulr 17228 /s cqus 17475 Grpcgrp 18872 ~QG cqg 19061 Ringcrg 20149 RSpancrsp 21124 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-er 8674 df-ec 8676 df-qs 8680 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-sup 9400 df-inf 9401 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-fz 13476 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-0g 17411 df-imas 17478 df-qus 17479 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-grp 18875 df-minusg 18876 df-sbg 18877 df-subg 19062 df-eqg 19064 df-mgp 20057 df-ur 20098 df-ring 20151 df-subrg 20486 df-lmod 20775 df-lss 20845 df-lsp 20885 df-sra 21087 df-rgmod 21088 df-lidl 21125 df-rsp 21126 |
| This theorem is referenced by: r1peuqusdeg1 35637 |
| Copyright terms: Public domain | W3C validator |