![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellcsrspsn | Structured version Visualization version GIF version |
Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19219 and elrspsn 21273. (Contributed by SN, 19-Jun-2025.) |
Ref | Expression |
---|---|
ellcsrspsn.b | ⊢ 𝐵 = (Base‘𝑅) |
ellcsrspsn.p | ⊢ + = (+g‘𝑅) |
ellcsrspsn.t | ⊢ · = (.r‘𝑅) |
ellcsrspsn.e | ⊢ ∼ = (𝑅 ~QG 𝐼) |
ellcsrspsn.u | ⊢ 𝑈 = (𝑅 /s ∼ ) |
ellcsrspsn.i | ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) |
ellcsrspsn.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ellcsrspsn.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
ellcsrspsn.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
Ref | Expression |
---|---|
ellcsrspsn | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellcsrspsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) | |
2 | ellcsrspsn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
3 | ellcsrspsn.e | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
4 | ellcsrspsn.u | . . . . 5 ⊢ 𝑈 = (𝑅 /s ∼ ) | |
5 | ellcsrspsn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 3, 4, 5 | quselbas 19224 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑈)) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) |
7 | 2, 1, 6 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) |
8 | 1, 7 | mpbid 232 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ ) |
9 | 2 | ringgrpd 20269 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Grp) |
10 | 9 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Grp) |
11 | ellcsrspsn.i | . . . . . . . . 9 ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) | |
12 | eqid 2740 | . . . . . . . . . 10 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
13 | ellcsrspsn.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
14 | 13 | snssd 4834 | . . . . . . . . . 10 ⊢ (𝜑 → {𝑀} ⊆ 𝐵) |
15 | 12, 5, 2, 14 | rspssbasd 35608 | . . . . . . . . 9 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑀}) ⊆ 𝐵) |
16 | 11, 15 | eqsstrid 4057 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
17 | 16 | adantr 480 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ⊆ 𝐵) |
18 | simpr 484 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
19 | ellcsrspsn.p | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
20 | 5, 3, 19 | eqglact 19219 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼)) |
21 | 10, 17, 18, 20 | syl3anc 1371 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼)) |
22 | eqid 2740 | . . . . . . . . 9 ⊢ (𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) = (𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) | |
23 | vex 3492 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
24 | 23 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑧 ∈ V) |
25 | 22, 24, 17 | elimampt 6072 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑖 ∈ 𝐼 𝑧 = (𝑥 + 𝑖))) |
26 | oveq2 7456 | . . . . . . . . . 10 ⊢ (𝑖 = (𝑦 · 𝑀) → (𝑥 + 𝑖) = (𝑥 + (𝑦 · 𝑀))) | |
27 | 26 | eqeq2d 2751 | . . . . . . . . 9 ⊢ (𝑖 = (𝑦 · 𝑀) → (𝑧 = (𝑥 + 𝑖) ↔ 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
28 | 11 | eleq2i 2836 | . . . . . . . . . . 11 ⊢ (𝑖 ∈ 𝐼 ↔ 𝑖 ∈ ((RSpan‘𝑅)‘{𝑀})) |
29 | ellcsrspsn.t | . . . . . . . . . . . . 13 ⊢ · = (.r‘𝑅) | |
30 | 5, 29, 12 | elrspsn 21273 | . . . . . . . . . . . 12 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
31 | 2, 13, 30 | syl2anc 583 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
32 | 28, 31 | bitrid 283 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑖 ∈ 𝐼 ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
33 | 32 | adantr 480 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑖 ∈ 𝐼 ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
34 | ovexd 7483 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 · 𝑀) ∈ V) | |
35 | 27, 33, 34 | rexxfr3d 35606 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑖 ∈ 𝐼 𝑧 = (𝑥 + 𝑖) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
36 | 25, 35 | bitrd 279 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
37 | 36 | eqabdv 2878 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}) |
38 | 21, 37 | eqtrd 2780 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}) |
39 | eqeq1 2744 | . . . . 5 ⊢ (𝑋 = [𝑥] ∼ → (𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))} ↔ [𝑥] ∼ = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) | |
40 | 38, 39 | syl5ibrcom 247 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑋 = [𝑥] ∼ → 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
41 | 40 | ancld 550 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑋 = [𝑥] ∼ → (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))) |
42 | 41 | reximdva 3174 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))) |
43 | 8, 42 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {cab 2717 ∃wrex 3076 Vcvv 3488 ⊆ wss 3976 {csn 4648 ↦ cmpt 5249 “ cima 5703 ‘cfv 6573 (class class class)co 7448 [cec 8761 Basecbs 17258 +gcplusg 17311 .rcmulr 17312 /s cqus 17565 Grpcgrp 18973 ~QG cqg 19162 Ringcrg 20260 RSpancrsp 21240 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-ec 8765 df-qs 8769 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-0g 17501 df-imas 17568 df-qus 17569 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-grp 18976 df-minusg 18977 df-sbg 18978 df-subg 19163 df-eqg 19165 df-mgp 20162 df-ur 20209 df-ring 20262 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-sra 21195 df-rgmod 21196 df-lidl 21241 df-rsp 21242 |
This theorem is referenced by: r1peuqusdeg1 35611 |
Copyright terms: Public domain | W3C validator |