Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellcsrspsn Structured version   Visualization version   GIF version

Theorem ellcsrspsn 35628
Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19111 and elrspsn 21150. (Contributed by SN, 19-Jun-2025.)
Hypotheses
Ref Expression
ellcsrspsn.b 𝐵 = (Base‘𝑅)
ellcsrspsn.p + = (+g𝑅)
ellcsrspsn.t · = (.r𝑅)
ellcsrspsn.e = (𝑅 ~QG 𝐼)
ellcsrspsn.u 𝑈 = (𝑅 /s )
ellcsrspsn.i 𝐼 = ((RSpan‘𝑅)‘{𝑀})
ellcsrspsn.r (𝜑𝑅 ∈ Ring)
ellcsrspsn.m (𝜑𝑀𝐵)
ellcsrspsn.x (𝜑𝑋 ∈ (Base‘𝑈))
Assertion
Ref Expression
ellcsrspsn (𝜑 → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑦,𝑅   𝑦,𝐼,𝑧   𝑦,𝑀   𝑥,𝑋,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,   𝑦, + ,𝑧   𝑦, ·
Allowed substitution hints:   + (𝑥)   (𝑦,𝑧)   𝑅(𝑥,𝑧)   · (𝑥,𝑧)   𝑈(𝑥,𝑦,𝑧)   𝐼(𝑥)   𝑀(𝑥,𝑧)   𝑋(𝑦)

Proof of Theorem ellcsrspsn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ellcsrspsn.x . . 3 (𝜑𝑋 ∈ (Base‘𝑈))
2 ellcsrspsn.r . . . 4 (𝜑𝑅 ∈ Ring)
3 ellcsrspsn.e . . . . 5 = (𝑅 ~QG 𝐼)
4 ellcsrspsn.u . . . . 5 𝑈 = (𝑅 /s )
5 ellcsrspsn.b . . . . 5 𝐵 = (Base‘𝑅)
63, 4, 5quselbas 19116 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑈)) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥𝐵 𝑋 = [𝑥] ))
72, 1, 6syl2anc 584 . . 3 (𝜑 → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥𝐵 𝑋 = [𝑥] ))
81, 7mpbid 232 . 2 (𝜑 → ∃𝑥𝐵 𝑋 = [𝑥] )
92ringgrpd 20151 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
109adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑅 ∈ Grp)
11 ellcsrspsn.i . . . . . . . . 9 𝐼 = ((RSpan‘𝑅)‘{𝑀})
12 eqid 2729 . . . . . . . . . 10 (RSpan‘𝑅) = (RSpan‘𝑅)
13 ellcsrspsn.m . . . . . . . . . . 11 (𝜑𝑀𝐵)
1413snssd 4773 . . . . . . . . . 10 (𝜑 → {𝑀} ⊆ 𝐵)
1512, 5, 2, 14rspssbasd 35627 . . . . . . . . 9 (𝜑 → ((RSpan‘𝑅)‘{𝑀}) ⊆ 𝐵)
1611, 15eqsstrid 3985 . . . . . . . 8 (𝜑𝐼𝐵)
1716adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐼𝐵)
18 simpr 484 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝐵)
19 ellcsrspsn.p . . . . . . . 8 + = (+g𝑅)
205, 3, 19eqglact 19111 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐼𝐵𝑥𝐵) → [𝑥] = ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼))
2110, 17, 18, 20syl3anc 1373 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥] = ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼))
22 eqid 2729 . . . . . . . . 9 (𝑖𝐵 ↦ (𝑥 + 𝑖)) = (𝑖𝐵 ↦ (𝑥 + 𝑖))
23 vex 3451 . . . . . . . . . 10 𝑧 ∈ V
2423a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑧 ∈ V)
2522, 24, 17elimampt 6014 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑧 ∈ ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑖𝐼 𝑧 = (𝑥 + 𝑖)))
26 oveq2 7395 . . . . . . . . . 10 (𝑖 = (𝑦 · 𝑀) → (𝑥 + 𝑖) = (𝑥 + (𝑦 · 𝑀)))
2726eqeq2d 2740 . . . . . . . . 9 (𝑖 = (𝑦 · 𝑀) → (𝑧 = (𝑥 + 𝑖) ↔ 𝑧 = (𝑥 + (𝑦 · 𝑀))))
2811eleq2i 2820 . . . . . . . . . . 11 (𝑖𝐼𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}))
29 ellcsrspsn.t . . . . . . . . . . . . 13 · = (.r𝑅)
305, 29, 12elrspsn 21150 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
312, 13, 30syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
3228, 31bitrid 283 . . . . . . . . . 10 (𝜑 → (𝑖𝐼 ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
3332adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑖𝐼 ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
34 ovexd 7422 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑦 · 𝑀) ∈ V)
3527, 33, 34rexxfr3d 35625 . . . . . . . 8 ((𝜑𝑥𝐵) → (∃𝑖𝐼 𝑧 = (𝑥 + 𝑖) ↔ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))))
3625, 35bitrd 279 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑧 ∈ ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))))
3736eqabdv 2861 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})
3821, 37eqtrd 2764 . . . . 5 ((𝜑𝑥𝐵) → [𝑥] = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})
39 eqeq1 2733 . . . . 5 (𝑋 = [𝑥] → (𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))} ↔ [𝑥] = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
4038, 39syl5ibrcom 247 . . . 4 ((𝜑𝑥𝐵) → (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
4140ancld 550 . . 3 ((𝜑𝑥𝐵) → (𝑋 = [𝑥] → (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})))
4241reximdva 3146 . 2 (𝜑 → (∃𝑥𝐵 𝑋 = [𝑥] → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})))
438, 42mpd 15 1 (𝜑 → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  {cab 2707  wrex 3053  Vcvv 3447  wss 3914  {csn 4589  cmpt 5188  cima 5641  cfv 6511  (class class class)co 7387  [cec 8669  Basecbs 17179  +gcplusg 17220  .rcmulr 17221   /s cqus 17468  Grpcgrp 18865   ~QG cqg 19054  Ringcrg 20142  RSpancrsp 21117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-ec 8673  df-qs 8677  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-fz 13469  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-0g 17404  df-imas 17471  df-qus 17472  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-grp 18868  df-minusg 18869  df-sbg 18870  df-subg 19055  df-eqg 19057  df-mgp 20050  df-ur 20091  df-ring 20144  df-subrg 20479  df-lmod 20768  df-lss 20838  df-lsp 20878  df-sra 21080  df-rgmod 21081  df-lidl 21118  df-rsp 21119
This theorem is referenced by:  r1peuqusdeg1  35630
  Copyright terms: Public domain W3C validator