Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellcsrspsn Structured version   Visualization version   GIF version

Theorem ellcsrspsn 35708
Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19095 and elrspsn 21181. (Contributed by SN, 19-Jun-2025.)
Hypotheses
Ref Expression
ellcsrspsn.b 𝐵 = (Base‘𝑅)
ellcsrspsn.p + = (+g𝑅)
ellcsrspsn.t · = (.r𝑅)
ellcsrspsn.e = (𝑅 ~QG 𝐼)
ellcsrspsn.u 𝑈 = (𝑅 /s )
ellcsrspsn.i 𝐼 = ((RSpan‘𝑅)‘{𝑀})
ellcsrspsn.r (𝜑𝑅 ∈ Ring)
ellcsrspsn.m (𝜑𝑀𝐵)
ellcsrspsn.x (𝜑𝑋 ∈ (Base‘𝑈))
Assertion
Ref Expression
ellcsrspsn (𝜑 → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑦,𝑅   𝑦,𝐼,𝑧   𝑦,𝑀   𝑥,𝑋,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,   𝑦, + ,𝑧   𝑦, ·
Allowed substitution hints:   + (𝑥)   (𝑦,𝑧)   𝑅(𝑥,𝑧)   · (𝑥,𝑧)   𝑈(𝑥,𝑦,𝑧)   𝐼(𝑥)   𝑀(𝑥,𝑧)   𝑋(𝑦)

Proof of Theorem ellcsrspsn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ellcsrspsn.x . . 3 (𝜑𝑋 ∈ (Base‘𝑈))
2 ellcsrspsn.r . . . 4 (𝜑𝑅 ∈ Ring)
3 ellcsrspsn.e . . . . 5 = (𝑅 ~QG 𝐼)
4 ellcsrspsn.u . . . . 5 𝑈 = (𝑅 /s )
5 ellcsrspsn.b . . . . 5 𝐵 = (Base‘𝑅)
63, 4, 5quselbas 19100 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑈)) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥𝐵 𝑋 = [𝑥] ))
72, 1, 6syl2anc 584 . . 3 (𝜑 → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥𝐵 𝑋 = [𝑥] ))
81, 7mpbid 232 . 2 (𝜑 → ∃𝑥𝐵 𝑋 = [𝑥] )
92ringgrpd 20164 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
109adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑅 ∈ Grp)
11 ellcsrspsn.i . . . . . . . . 9 𝐼 = ((RSpan‘𝑅)‘{𝑀})
12 eqid 2733 . . . . . . . . . 10 (RSpan‘𝑅) = (RSpan‘𝑅)
13 ellcsrspsn.m . . . . . . . . . . 11 (𝜑𝑀𝐵)
1413snssd 4762 . . . . . . . . . 10 (𝜑 → {𝑀} ⊆ 𝐵)
1512, 5, 2, 14rspssbasd 35707 . . . . . . . . 9 (𝜑 → ((RSpan‘𝑅)‘{𝑀}) ⊆ 𝐵)
1611, 15eqsstrid 3969 . . . . . . . 8 (𝜑𝐼𝐵)
1716adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐼𝐵)
18 simpr 484 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝐵)
19 ellcsrspsn.p . . . . . . . 8 + = (+g𝑅)
205, 3, 19eqglact 19095 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐼𝐵𝑥𝐵) → [𝑥] = ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼))
2110, 17, 18, 20syl3anc 1373 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥] = ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼))
22 eqid 2733 . . . . . . . . 9 (𝑖𝐵 ↦ (𝑥 + 𝑖)) = (𝑖𝐵 ↦ (𝑥 + 𝑖))
23 vex 3441 . . . . . . . . . 10 𝑧 ∈ V
2423a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑧 ∈ V)
2522, 24, 17elimampt 5998 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑧 ∈ ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑖𝐼 𝑧 = (𝑥 + 𝑖)))
26 oveq2 7362 . . . . . . . . . 10 (𝑖 = (𝑦 · 𝑀) → (𝑥 + 𝑖) = (𝑥 + (𝑦 · 𝑀)))
2726eqeq2d 2744 . . . . . . . . 9 (𝑖 = (𝑦 · 𝑀) → (𝑧 = (𝑥 + 𝑖) ↔ 𝑧 = (𝑥 + (𝑦 · 𝑀))))
2811eleq2i 2825 . . . . . . . . . . 11 (𝑖𝐼𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}))
29 ellcsrspsn.t . . . . . . . . . . . . 13 · = (.r𝑅)
305, 29, 12elrspsn 21181 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
312, 13, 30syl2anc 584 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
3228, 31bitrid 283 . . . . . . . . . 10 (𝜑 → (𝑖𝐼 ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
3332adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑖𝐼 ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
34 ovexd 7389 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑦 · 𝑀) ∈ V)
3527, 33, 34rexxfr3d 35705 . . . . . . . 8 ((𝜑𝑥𝐵) → (∃𝑖𝐼 𝑧 = (𝑥 + 𝑖) ↔ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))))
3625, 35bitrd 279 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑧 ∈ ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))))
3736eqabdv 2866 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})
3821, 37eqtrd 2768 . . . . 5 ((𝜑𝑥𝐵) → [𝑥] = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})
39 eqeq1 2737 . . . . 5 (𝑋 = [𝑥] → (𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))} ↔ [𝑥] = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
4038, 39syl5ibrcom 247 . . . 4 ((𝜑𝑥𝐵) → (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
4140ancld 550 . . 3 ((𝜑𝑥𝐵) → (𝑋 = [𝑥] → (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})))
4241reximdva 3146 . 2 (𝜑 → (∃𝑥𝐵 𝑋 = [𝑥] → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})))
438, 42mpd 15 1 (𝜑 → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  {cab 2711  wrex 3057  Vcvv 3437  wss 3898  {csn 4577  cmpt 5176  cima 5624  cfv 6488  (class class class)co 7354  [cec 8628  Basecbs 17124  +gcplusg 17165  .rcmulr 17166   /s cqus 17413  Grpcgrp 18850   ~QG cqg 19039  Ringcrg 20155  RSpancrsp 21148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-1o 8393  df-er 8630  df-ec 8632  df-qs 8636  df-en 8878  df-dom 8879  df-sdom 8880  df-fin 8881  df-sup 9335  df-inf 9336  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-2 12197  df-3 12198  df-4 12199  df-5 12200  df-6 12201  df-7 12202  df-8 12203  df-9 12204  df-n0 12391  df-z 12478  df-dec 12597  df-uz 12741  df-fz 13412  df-struct 17062  df-sets 17079  df-slot 17097  df-ndx 17109  df-base 17125  df-ress 17146  df-plusg 17178  df-mulr 17179  df-sca 17181  df-vsca 17182  df-ip 17183  df-tset 17184  df-ple 17185  df-ds 17187  df-0g 17349  df-imas 17416  df-qus 17417  df-mgm 18552  df-sgrp 18631  df-mnd 18647  df-grp 18853  df-minusg 18854  df-sbg 18855  df-subg 19040  df-eqg 19042  df-mgp 20063  df-ur 20104  df-ring 20157  df-subrg 20489  df-lmod 20799  df-lss 20869  df-lsp 20909  df-sra 21111  df-rgmod 21112  df-lidl 21149  df-rsp 21150
This theorem is referenced by:  r1peuqusdeg1  35710
  Copyright terms: Public domain W3C validator