![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ellcsrspsn | Structured version Visualization version GIF version |
Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19166 and elrspsn 21222. (Contributed by SN, 19-Jun-2025.) |
Ref | Expression |
---|---|
ellcsrspsn.b | ⊢ 𝐵 = (Base‘𝑅) |
ellcsrspsn.p | ⊢ + = (+g‘𝑅) |
ellcsrspsn.t | ⊢ · = (.r‘𝑅) |
ellcsrspsn.e | ⊢ ∼ = (𝑅 ~QG 𝐼) |
ellcsrspsn.u | ⊢ 𝑈 = (𝑅 /s ∼ ) |
ellcsrspsn.i | ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) |
ellcsrspsn.r | ⊢ (𝜑 → 𝑅 ∈ Ring) |
ellcsrspsn.m | ⊢ (𝜑 → 𝑀 ∈ 𝐵) |
ellcsrspsn.x | ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) |
Ref | Expression |
---|---|
ellcsrspsn | ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ellcsrspsn.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (Base‘𝑈)) | |
2 | ellcsrspsn.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) | |
3 | ellcsrspsn.e | . . . . 5 ⊢ ∼ = (𝑅 ~QG 𝐼) | |
4 | ellcsrspsn.u | . . . . 5 ⊢ 𝑈 = (𝑅 /s ∼ ) | |
5 | ellcsrspsn.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
6 | 3, 4, 5 | quselbas 19171 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑈)) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) |
7 | 2, 1, 6 | syl2anc 582 | . . 3 ⊢ (𝜑 → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ )) |
8 | 1, 7 | mpbid 231 | . 2 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ ) |
9 | 2 | ringgrpd 20218 | . . . . . . . 8 ⊢ (𝜑 → 𝑅 ∈ Grp) |
10 | 9 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑅 ∈ Grp) |
11 | ellcsrspsn.i | . . . . . . . . 9 ⊢ 𝐼 = ((RSpan‘𝑅)‘{𝑀}) | |
12 | eqid 2726 | . . . . . . . . . 10 ⊢ (RSpan‘𝑅) = (RSpan‘𝑅) | |
13 | ellcsrspsn.m | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑀 ∈ 𝐵) | |
14 | 13 | snssd 4808 | . . . . . . . . . 10 ⊢ (𝜑 → {𝑀} ⊆ 𝐵) |
15 | 12, 5, 2, 14 | rspssbasd 35478 | . . . . . . . . 9 ⊢ (𝜑 → ((RSpan‘𝑅)‘{𝑀}) ⊆ 𝐵) |
16 | 11, 15 | eqsstrid 4027 | . . . . . . . 8 ⊢ (𝜑 → 𝐼 ⊆ 𝐵) |
17 | 16 | adantr 479 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝐼 ⊆ 𝐵) |
18 | simpr 483 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑥 ∈ 𝐵) | |
19 | ellcsrspsn.p | . . . . . . . 8 ⊢ + = (+g‘𝑅) | |
20 | 5, 3, 19 | eqglact 19166 | . . . . . . 7 ⊢ ((𝑅 ∈ Grp ∧ 𝐼 ⊆ 𝐵 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼)) |
21 | 10, 17, 18, 20 | syl3anc 1368 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼)) |
22 | eqid 2726 | . . . . . . . . 9 ⊢ (𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) = (𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) | |
23 | vex 3466 | . . . . . . . . . 10 ⊢ 𝑧 ∈ V | |
24 | 23 | a1i 11 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → 𝑧 ∈ V) |
25 | 22, 24, 17 | elimampt 6042 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑖 ∈ 𝐼 𝑧 = (𝑥 + 𝑖))) |
26 | oveq2 7421 | . . . . . . . . . 10 ⊢ (𝑖 = (𝑦 · 𝑀) → (𝑥 + 𝑖) = (𝑥 + (𝑦 · 𝑀))) | |
27 | 26 | eqeq2d 2737 | . . . . . . . . 9 ⊢ (𝑖 = (𝑦 · 𝑀) → (𝑧 = (𝑥 + 𝑖) ↔ 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
28 | 11 | eleq2i 2818 | . . . . . . . . . . 11 ⊢ (𝑖 ∈ 𝐼 ↔ 𝑖 ∈ ((RSpan‘𝑅)‘{𝑀})) |
29 | ellcsrspsn.t | . . . . . . . . . . . . 13 ⊢ · = (.r‘𝑅) | |
30 | 5, 29, 12 | elrspsn 21222 | . . . . . . . . . . . 12 ⊢ ((𝑅 ∈ Ring ∧ 𝑀 ∈ 𝐵) → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
31 | 2, 13, 30 | syl2anc 582 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
32 | 28, 31 | bitrid 282 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑖 ∈ 𝐼 ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
33 | 32 | adantr 479 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑖 ∈ 𝐼 ↔ ∃𝑦 ∈ 𝐵 𝑖 = (𝑦 · 𝑀))) |
34 | ovexd 7448 | . . . . . . . . 9 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑦 · 𝑀) ∈ V) | |
35 | 27, 33, 34 | rexxfr3d 35476 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (∃𝑖 ∈ 𝐼 𝑧 = (𝑥 + 𝑖) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
36 | 25, 35 | bitrd 278 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑧 ∈ ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀)))) |
37 | 36 | eqabdv 2860 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → ((𝑖 ∈ 𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}) |
38 | 21, 37 | eqtrd 2766 | . . . . 5 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → [𝑥] ∼ = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}) |
39 | eqeq1 2730 | . . . . 5 ⊢ (𝑋 = [𝑥] ∼ → (𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))} ↔ [𝑥] ∼ = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) | |
40 | 38, 39 | syl5ibrcom 246 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑋 = [𝑥] ∼ → 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
41 | 40 | ancld 549 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐵) → (𝑋 = [𝑥] ∼ → (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))) |
42 | 41 | reximdva 3158 | . 2 ⊢ (𝜑 → (∃𝑥 ∈ 𝐵 𝑋 = [𝑥] ∼ → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))) |
43 | 8, 42 | mpd 15 | 1 ⊢ (𝜑 → ∃𝑥 ∈ 𝐵 (𝑋 = [𝑥] ∼ ∧ 𝑋 = {𝑧 ∣ ∃𝑦 ∈ 𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {cab 2703 ∃wrex 3060 Vcvv 3462 ⊆ wss 3946 {csn 4623 ↦ cmpt 5226 “ cima 5675 ‘cfv 6543 (class class class)co 7413 [cec 8721 Basecbs 17205 +gcplusg 17258 .rcmulr 17259 /s cqus 17512 Grpcgrp 18920 ~QG cqg 19109 Ringcrg 20209 RSpancrsp 21189 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7735 ax-cnex 11202 ax-resscn 11203 ax-1cn 11204 ax-icn 11205 ax-addcl 11206 ax-addrcl 11207 ax-mulcl 11208 ax-mulrcl 11209 ax-mulcom 11210 ax-addass 11211 ax-mulass 11212 ax-distr 11213 ax-i2m1 11214 ax-1ne0 11215 ax-1rid 11216 ax-rnegex 11217 ax-rrecex 11218 ax-cnre 11219 ax-pre-lttri 11220 ax-pre-lttrn 11221 ax-pre-ltadd 11222 ax-pre-mulgt0 11223 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3464 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4323 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4906 df-int 4947 df-iun 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6302 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-om 7866 df-1st 7992 df-2nd 7993 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-1o 8485 df-er 8723 df-ec 8725 df-qs 8729 df-en 8964 df-dom 8965 df-sdom 8966 df-fin 8967 df-sup 9475 df-inf 9476 df-pnf 11288 df-mnf 11289 df-xr 11290 df-ltxr 11291 df-le 11292 df-sub 11484 df-neg 11485 df-nn 12256 df-2 12318 df-3 12319 df-4 12320 df-5 12321 df-6 12322 df-7 12323 df-8 12324 df-9 12325 df-n0 12516 df-z 12602 df-dec 12721 df-uz 12866 df-fz 13530 df-struct 17141 df-sets 17158 df-slot 17176 df-ndx 17188 df-base 17206 df-ress 17235 df-plusg 17271 df-mulr 17272 df-sca 17274 df-vsca 17275 df-ip 17276 df-tset 17277 df-ple 17278 df-ds 17280 df-0g 17448 df-imas 17515 df-qus 17516 df-mgm 18625 df-sgrp 18704 df-mnd 18720 df-grp 18923 df-minusg 18924 df-sbg 18925 df-subg 19110 df-eqg 19112 df-mgp 20111 df-ur 20158 df-ring 20211 df-subrg 20546 df-lmod 20831 df-lss 20902 df-lsp 20942 df-sra 21144 df-rgmod 21145 df-lidl 21190 df-rsp 21191 |
This theorem is referenced by: r1peuqusdeg1 35481 |
Copyright terms: Public domain | W3C validator |