Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellcsrspsn Structured version   Visualization version   GIF version

Theorem ellcsrspsn 35479
Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19166 and elrspsn 21222. (Contributed by SN, 19-Jun-2025.)
Hypotheses
Ref Expression
ellcsrspsn.b 𝐵 = (Base‘𝑅)
ellcsrspsn.p + = (+g𝑅)
ellcsrspsn.t · = (.r𝑅)
ellcsrspsn.e = (𝑅 ~QG 𝐼)
ellcsrspsn.u 𝑈 = (𝑅 /s )
ellcsrspsn.i 𝐼 = ((RSpan‘𝑅)‘{𝑀})
ellcsrspsn.r (𝜑𝑅 ∈ Ring)
ellcsrspsn.m (𝜑𝑀𝐵)
ellcsrspsn.x (𝜑𝑋 ∈ (Base‘𝑈))
Assertion
Ref Expression
ellcsrspsn (𝜑 → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑦,𝑅   𝑦,𝐼,𝑧   𝑦,𝑀   𝑥,𝑋,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,   𝑦, + ,𝑧   𝑦, ·
Allowed substitution hints:   + (𝑥)   (𝑦,𝑧)   𝑅(𝑥,𝑧)   · (𝑥,𝑧)   𝑈(𝑥,𝑦,𝑧)   𝐼(𝑥)   𝑀(𝑥,𝑧)   𝑋(𝑦)

Proof of Theorem ellcsrspsn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ellcsrspsn.x . . 3 (𝜑𝑋 ∈ (Base‘𝑈))
2 ellcsrspsn.r . . . 4 (𝜑𝑅 ∈ Ring)
3 ellcsrspsn.e . . . . 5 = (𝑅 ~QG 𝐼)
4 ellcsrspsn.u . . . . 5 𝑈 = (𝑅 /s )
5 ellcsrspsn.b . . . . 5 𝐵 = (Base‘𝑅)
63, 4, 5quselbas 19171 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑈)) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥𝐵 𝑋 = [𝑥] ))
72, 1, 6syl2anc 582 . . 3 (𝜑 → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥𝐵 𝑋 = [𝑥] ))
81, 7mpbid 231 . 2 (𝜑 → ∃𝑥𝐵 𝑋 = [𝑥] )
92ringgrpd 20218 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
109adantr 479 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑅 ∈ Grp)
11 ellcsrspsn.i . . . . . . . . 9 𝐼 = ((RSpan‘𝑅)‘{𝑀})
12 eqid 2726 . . . . . . . . . 10 (RSpan‘𝑅) = (RSpan‘𝑅)
13 ellcsrspsn.m . . . . . . . . . . 11 (𝜑𝑀𝐵)
1413snssd 4808 . . . . . . . . . 10 (𝜑 → {𝑀} ⊆ 𝐵)
1512, 5, 2, 14rspssbasd 35478 . . . . . . . . 9 (𝜑 → ((RSpan‘𝑅)‘{𝑀}) ⊆ 𝐵)
1611, 15eqsstrid 4027 . . . . . . . 8 (𝜑𝐼𝐵)
1716adantr 479 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐼𝐵)
18 simpr 483 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝐵)
19 ellcsrspsn.p . . . . . . . 8 + = (+g𝑅)
205, 3, 19eqglact 19166 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐼𝐵𝑥𝐵) → [𝑥] = ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼))
2110, 17, 18, 20syl3anc 1368 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥] = ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼))
22 eqid 2726 . . . . . . . . 9 (𝑖𝐵 ↦ (𝑥 + 𝑖)) = (𝑖𝐵 ↦ (𝑥 + 𝑖))
23 vex 3466 . . . . . . . . . 10 𝑧 ∈ V
2423a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑧 ∈ V)
2522, 24, 17elimampt 6042 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑧 ∈ ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑖𝐼 𝑧 = (𝑥 + 𝑖)))
26 oveq2 7421 . . . . . . . . . 10 (𝑖 = (𝑦 · 𝑀) → (𝑥 + 𝑖) = (𝑥 + (𝑦 · 𝑀)))
2726eqeq2d 2737 . . . . . . . . 9 (𝑖 = (𝑦 · 𝑀) → (𝑧 = (𝑥 + 𝑖) ↔ 𝑧 = (𝑥 + (𝑦 · 𝑀))))
2811eleq2i 2818 . . . . . . . . . . 11 (𝑖𝐼𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}))
29 ellcsrspsn.t . . . . . . . . . . . . 13 · = (.r𝑅)
305, 29, 12elrspsn 21222 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
312, 13, 30syl2anc 582 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
3228, 31bitrid 282 . . . . . . . . . 10 (𝜑 → (𝑖𝐼 ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
3332adantr 479 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑖𝐼 ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
34 ovexd 7448 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑦 · 𝑀) ∈ V)
3527, 33, 34rexxfr3d 35476 . . . . . . . 8 ((𝜑𝑥𝐵) → (∃𝑖𝐼 𝑧 = (𝑥 + 𝑖) ↔ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))))
3625, 35bitrd 278 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑧 ∈ ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))))
3736eqabdv 2860 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})
3821, 37eqtrd 2766 . . . . 5 ((𝜑𝑥𝐵) → [𝑥] = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})
39 eqeq1 2730 . . . . 5 (𝑋 = [𝑥] → (𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))} ↔ [𝑥] = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
4038, 39syl5ibrcom 246 . . . 4 ((𝜑𝑥𝐵) → (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
4140ancld 549 . . 3 ((𝜑𝑥𝐵) → (𝑋 = [𝑥] → (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})))
4241reximdva 3158 . 2 (𝜑 → (∃𝑥𝐵 𝑋 = [𝑥] → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})))
438, 42mpd 15 1 (𝜑 → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394   = wceq 1534  wcel 2099  {cab 2703  wrex 3060  Vcvv 3462  wss 3946  {csn 4623  cmpt 5226  cima 5675  cfv 6543  (class class class)co 7413  [cec 8721  Basecbs 17205  +gcplusg 17258  .rcmulr 17259   /s cqus 17512  Grpcgrp 18920   ~QG cqg 19109  Ringcrg 20209  RSpancrsp 21189
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7735  ax-cnex 11202  ax-resscn 11203  ax-1cn 11204  ax-icn 11205  ax-addcl 11206  ax-addrcl 11207  ax-mulcl 11208  ax-mulrcl 11209  ax-mulcom 11210  ax-addass 11211  ax-mulass 11212  ax-distr 11213  ax-i2m1 11214  ax-1ne0 11215  ax-1rid 11216  ax-rnegex 11217  ax-rrecex 11218  ax-cnre 11219  ax-pre-lttri 11220  ax-pre-lttrn 11221  ax-pre-ltadd 11222  ax-pre-mulgt0 11223
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3464  df-sbc 3776  df-csb 3892  df-dif 3949  df-un 3951  df-in 3953  df-ss 3963  df-pss 3966  df-nul 4323  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-tp 4628  df-op 4630  df-uni 4906  df-int 4947  df-iun 4995  df-br 5144  df-opab 5206  df-mpt 5227  df-tr 5261  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-pred 6302  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7369  df-ov 7416  df-oprab 7417  df-mpo 7418  df-om 7866  df-1st 7992  df-2nd 7993  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8723  df-ec 8725  df-qs 8729  df-en 8964  df-dom 8965  df-sdom 8966  df-fin 8967  df-sup 9475  df-inf 9476  df-pnf 11288  df-mnf 11289  df-xr 11290  df-ltxr 11291  df-le 11292  df-sub 11484  df-neg 11485  df-nn 12256  df-2 12318  df-3 12319  df-4 12320  df-5 12321  df-6 12322  df-7 12323  df-8 12324  df-9 12325  df-n0 12516  df-z 12602  df-dec 12721  df-uz 12866  df-fz 13530  df-struct 17141  df-sets 17158  df-slot 17176  df-ndx 17188  df-base 17206  df-ress 17235  df-plusg 17271  df-mulr 17272  df-sca 17274  df-vsca 17275  df-ip 17276  df-tset 17277  df-ple 17278  df-ds 17280  df-0g 17448  df-imas 17515  df-qus 17516  df-mgm 18625  df-sgrp 18704  df-mnd 18720  df-grp 18923  df-minusg 18924  df-sbg 18925  df-subg 19110  df-eqg 19112  df-mgp 20111  df-ur 20158  df-ring 20211  df-subrg 20546  df-lmod 20831  df-lss 20902  df-lsp 20942  df-sra 21144  df-rgmod 21145  df-lidl 21190  df-rsp 21191
This theorem is referenced by:  r1peuqusdeg1  35481
  Copyright terms: Public domain W3C validator