Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ellcsrspsn Structured version   Visualization version   GIF version

Theorem ellcsrspsn 35609
Description: Membership in a left coset in a quotient of a ring by the span of a singleton (that is, by the ideal generated by an element). This characterization comes from eqglact 19219 and elrspsn 21273. (Contributed by SN, 19-Jun-2025.)
Hypotheses
Ref Expression
ellcsrspsn.b 𝐵 = (Base‘𝑅)
ellcsrspsn.p + = (+g𝑅)
ellcsrspsn.t · = (.r𝑅)
ellcsrspsn.e = (𝑅 ~QG 𝐼)
ellcsrspsn.u 𝑈 = (𝑅 /s )
ellcsrspsn.i 𝐼 = ((RSpan‘𝑅)‘{𝑀})
ellcsrspsn.r (𝜑𝑅 ∈ Ring)
ellcsrspsn.m (𝜑𝑀𝐵)
ellcsrspsn.x (𝜑𝑋 ∈ (Base‘𝑈))
Assertion
Ref Expression
ellcsrspsn (𝜑 → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
Distinct variable groups:   𝑥,𝐵,𝑦,𝑧   𝑦,𝑅   𝑦,𝐼,𝑧   𝑦,𝑀   𝑥,𝑋,𝑧   𝜑,𝑥,𝑦,𝑧   𝑥,   𝑦, + ,𝑧   𝑦, ·
Allowed substitution hints:   + (𝑥)   (𝑦,𝑧)   𝑅(𝑥,𝑧)   · (𝑥,𝑧)   𝑈(𝑥,𝑦,𝑧)   𝐼(𝑥)   𝑀(𝑥,𝑧)   𝑋(𝑦)

Proof of Theorem ellcsrspsn
Dummy variable 𝑖 is distinct from all other variables.
StepHypRef Expression
1 ellcsrspsn.x . . 3 (𝜑𝑋 ∈ (Base‘𝑈))
2 ellcsrspsn.r . . . 4 (𝜑𝑅 ∈ Ring)
3 ellcsrspsn.e . . . . 5 = (𝑅 ~QG 𝐼)
4 ellcsrspsn.u . . . . 5 𝑈 = (𝑅 /s )
5 ellcsrspsn.b . . . . 5 𝐵 = (Base‘𝑅)
63, 4, 5quselbas 19224 . . . 4 ((𝑅 ∈ Ring ∧ 𝑋 ∈ (Base‘𝑈)) → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥𝐵 𝑋 = [𝑥] ))
72, 1, 6syl2anc 583 . . 3 (𝜑 → (𝑋 ∈ (Base‘𝑈) ↔ ∃𝑥𝐵 𝑋 = [𝑥] ))
81, 7mpbid 232 . 2 (𝜑 → ∃𝑥𝐵 𝑋 = [𝑥] )
92ringgrpd 20269 . . . . . . . 8 (𝜑𝑅 ∈ Grp)
109adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑅 ∈ Grp)
11 ellcsrspsn.i . . . . . . . . 9 𝐼 = ((RSpan‘𝑅)‘{𝑀})
12 eqid 2740 . . . . . . . . . 10 (RSpan‘𝑅) = (RSpan‘𝑅)
13 ellcsrspsn.m . . . . . . . . . . 11 (𝜑𝑀𝐵)
1413snssd 4834 . . . . . . . . . 10 (𝜑 → {𝑀} ⊆ 𝐵)
1512, 5, 2, 14rspssbasd 35608 . . . . . . . . 9 (𝜑 → ((RSpan‘𝑅)‘{𝑀}) ⊆ 𝐵)
1611, 15eqsstrid 4057 . . . . . . . 8 (𝜑𝐼𝐵)
1716adantr 480 . . . . . . 7 ((𝜑𝑥𝐵) → 𝐼𝐵)
18 simpr 484 . . . . . . 7 ((𝜑𝑥𝐵) → 𝑥𝐵)
19 ellcsrspsn.p . . . . . . . 8 + = (+g𝑅)
205, 3, 19eqglact 19219 . . . . . . 7 ((𝑅 ∈ Grp ∧ 𝐼𝐵𝑥𝐵) → [𝑥] = ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼))
2110, 17, 18, 20syl3anc 1371 . . . . . 6 ((𝜑𝑥𝐵) → [𝑥] = ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼))
22 eqid 2740 . . . . . . . . 9 (𝑖𝐵 ↦ (𝑥 + 𝑖)) = (𝑖𝐵 ↦ (𝑥 + 𝑖))
23 vex 3492 . . . . . . . . . 10 𝑧 ∈ V
2423a1i 11 . . . . . . . . 9 ((𝜑𝑥𝐵) → 𝑧 ∈ V)
2522, 24, 17elimampt 6072 . . . . . . . 8 ((𝜑𝑥𝐵) → (𝑧 ∈ ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑖𝐼 𝑧 = (𝑥 + 𝑖)))
26 oveq2 7456 . . . . . . . . . 10 (𝑖 = (𝑦 · 𝑀) → (𝑥 + 𝑖) = (𝑥 + (𝑦 · 𝑀)))
2726eqeq2d 2751 . . . . . . . . 9 (𝑖 = (𝑦 · 𝑀) → (𝑧 = (𝑥 + 𝑖) ↔ 𝑧 = (𝑥 + (𝑦 · 𝑀))))
2811eleq2i 2836 . . . . . . . . . . 11 (𝑖𝐼𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}))
29 ellcsrspsn.t . . . . . . . . . . . . 13 · = (.r𝑅)
305, 29, 12elrspsn 21273 . . . . . . . . . . . 12 ((𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
312, 13, 30syl2anc 583 . . . . . . . . . . 11 (𝜑 → (𝑖 ∈ ((RSpan‘𝑅)‘{𝑀}) ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
3228, 31bitrid 283 . . . . . . . . . 10 (𝜑 → (𝑖𝐼 ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
3332adantr 480 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑖𝐼 ↔ ∃𝑦𝐵 𝑖 = (𝑦 · 𝑀)))
34 ovexd 7483 . . . . . . . . 9 ((𝜑𝑥𝐵) → (𝑦 · 𝑀) ∈ V)
3527, 33, 34rexxfr3d 35606 . . . . . . . 8 ((𝜑𝑥𝐵) → (∃𝑖𝐼 𝑧 = (𝑥 + 𝑖) ↔ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))))
3625, 35bitrd 279 . . . . . . 7 ((𝜑𝑥𝐵) → (𝑧 ∈ ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) ↔ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))))
3736eqabdv 2878 . . . . . 6 ((𝜑𝑥𝐵) → ((𝑖𝐵 ↦ (𝑥 + 𝑖)) “ 𝐼) = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})
3821, 37eqtrd 2780 . . . . 5 ((𝜑𝑥𝐵) → [𝑥] = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})
39 eqeq1 2744 . . . . 5 (𝑋 = [𝑥] → (𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))} ↔ [𝑥] = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
4038, 39syl5ibrcom 247 . . . 4 ((𝜑𝑥𝐵) → (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
4140ancld 550 . . 3 ((𝜑𝑥𝐵) → (𝑋 = [𝑥] → (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})))
4241reximdva 3174 . 2 (𝜑 → (∃𝑥𝐵 𝑋 = [𝑥] → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))})))
438, 42mpd 15 1 (𝜑 → ∃𝑥𝐵 (𝑋 = [𝑥] 𝑋 = {𝑧 ∣ ∃𝑦𝐵 𝑧 = (𝑥 + (𝑦 · 𝑀))}))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  {cab 2717  wrex 3076  Vcvv 3488  wss 3976  {csn 4648  cmpt 5249  cima 5703  cfv 6573  (class class class)co 7448  [cec 8761  Basecbs 17258  +gcplusg 17311  .rcmulr 17312   /s cqus 17565  Grpcgrp 18973   ~QG cqg 19162  Ringcrg 20260  RSpancrsp 21240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-ec 8765  df-qs 8769  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-0g 17501  df-imas 17568  df-qus 17569  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-grp 18976  df-minusg 18977  df-sbg 18978  df-subg 19163  df-eqg 19165  df-mgp 20162  df-ur 20209  df-ring 20262  df-subrg 20597  df-lmod 20882  df-lss 20953  df-lsp 20993  df-sra 21195  df-rgmod 21196  df-lidl 21241  df-rsp 21242
This theorem is referenced by:  r1peuqusdeg1  35611
  Copyright terms: Public domain W3C validator