Proof of Theorem rexxfr3dALT
Step | Hyp | Ref
| Expression |
1 | | rexxfr3dALT.x |
. . . . . 6
⊢ (𝜑 → (𝑥 ∈ 𝐴 ↔ ∃𝑦 ∈ 𝐵 𝑥 = 𝑋)) |
2 | 1 | anbi1d 629 |
. . . . 5
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (∃𝑦 ∈ 𝐵 𝑥 = 𝑋 ∧ 𝜓))) |
3 | | rexxfr3dALT.s |
. . . . . . . 8
⊢ (𝑥 = 𝑋 → (𝜓 ↔ 𝜒)) |
4 | 3 | pm5.32i 573 |
. . . . . . 7
⊢ ((𝑥 = 𝑋 ∧ 𝜓) ↔ (𝑥 = 𝑋 ∧ 𝜒)) |
5 | 4 | rexbii 3084 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 (𝑥 = 𝑋 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐵 (𝑥 = 𝑋 ∧ 𝜒)) |
6 | | r19.41v 3179 |
. . . . . 6
⊢
(∃𝑦 ∈
𝐵 (𝑥 = 𝑋 ∧ 𝜓) ↔ (∃𝑦 ∈ 𝐵 𝑥 = 𝑋 ∧ 𝜓)) |
7 | 5, 6 | bitr3i 276 |
. . . . 5
⊢
(∃𝑦 ∈
𝐵 (𝑥 = 𝑋 ∧ 𝜒) ↔ (∃𝑦 ∈ 𝐵 𝑥 = 𝑋 ∧ 𝜓)) |
8 | 2, 7 | bitr4di 288 |
. . . 4
⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑦 ∈ 𝐵 (𝑥 = 𝑋 ∧ 𝜒))) |
9 | 8 | exbidv 1917 |
. . 3
⊢ (𝜑 → (∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃𝑥∃𝑦 ∈ 𝐵 (𝑥 = 𝑋 ∧ 𝜒))) |
10 | | df-rex 3061 |
. . 3
⊢
(∃𝑥 ∈
𝐴 𝜓 ↔ ∃𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) |
11 | | 19.41v 1946 |
. . . . 5
⊢
(∃𝑥(𝑥 = 𝑋 ∧ 𝜒) ↔ (∃𝑥 𝑥 = 𝑋 ∧ 𝜒)) |
12 | 11 | rexbii 3084 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 ∃𝑥(𝑥 = 𝑋 ∧ 𝜒) ↔ ∃𝑦 ∈ 𝐵 (∃𝑥 𝑥 = 𝑋 ∧ 𝜒)) |
13 | | rexcom4 3276 |
. . . 4
⊢
(∃𝑦 ∈
𝐵 ∃𝑥(𝑥 = 𝑋 ∧ 𝜒) ↔ ∃𝑥∃𝑦 ∈ 𝐵 (𝑥 = 𝑋 ∧ 𝜒)) |
14 | 12, 13 | bitr3i 276 |
. . 3
⊢
(∃𝑦 ∈
𝐵 (∃𝑥 𝑥 = 𝑋 ∧ 𝜒) ↔ ∃𝑥∃𝑦 ∈ 𝐵 (𝑥 = 𝑋 ∧ 𝜒)) |
15 | 9, 10, 14 | 3bitr4g 313 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 (∃𝑥 𝑥 = 𝑋 ∧ 𝜒))) |
16 | | rexxfr3dALT.a |
. . . . 5
⊢ (𝜑 → 𝑋 ∈ 𝑉) |
17 | | elisset 2808 |
. . . . 5
⊢ (𝑋 ∈ 𝑉 → ∃𝑥 𝑥 = 𝑋) |
18 | 16, 17 | syl 17 |
. . . 4
⊢ (𝜑 → ∃𝑥 𝑥 = 𝑋) |
19 | 18 | biantrurd 531 |
. . 3
⊢ (𝜑 → (𝜒 ↔ (∃𝑥 𝑥 = 𝑋 ∧ 𝜒))) |
20 | 19 | rexbidv 3169 |
. 2
⊢ (𝜑 → (∃𝑦 ∈ 𝐵 𝜒 ↔ ∃𝑦 ∈ 𝐵 (∃𝑥 𝑥 = 𝑋 ∧ 𝜒))) |
21 | 15, 20 | bitr4d 281 |
1
⊢ (𝜑 → (∃𝑥 ∈ 𝐴 𝜓 ↔ ∃𝑦 ∈ 𝐵 𝜒)) |