Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rexxfr3dALT Structured version   Visualization version   GIF version

Theorem rexxfr3dALT 35607
Description: Longer proof of rexxfr3d 35606 using ax-11 2158 instead of ax-12 2178, without the disjoint variable condition 𝐴𝑥𝑦. (Contributed by SN, 19-Jun-2025.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypotheses
Ref Expression
rexxfr3dALT.s (𝑥 = 𝑋 → (𝜓𝜒))
rexxfr3dALT.x (𝜑 → (𝑥𝐴 ↔ ∃𝑦𝐵 𝑥 = 𝑋))
rexxfr3dALT.a (𝜑𝑋𝑉)
Assertion
Ref Expression
rexxfr3dALT (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒))
Distinct variable groups:   𝜑,𝑥,𝑦   𝜓,𝑦   𝜒,𝑥   𝑥,𝑋   𝑥,𝐵
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑦)   𝐴(𝑥,𝑦)   𝐵(𝑦)   𝑉(𝑥,𝑦)   𝑋(𝑦)

Proof of Theorem rexxfr3dALT
StepHypRef Expression
1 rexxfr3dALT.x . . . . . 6 (𝜑 → (𝑥𝐴 ↔ ∃𝑦𝐵 𝑥 = 𝑋))
21anbi1d 630 . . . . 5 (𝜑 → ((𝑥𝐴𝜓) ↔ (∃𝑦𝐵 𝑥 = 𝑋𝜓)))
3 rexxfr3dALT.s . . . . . . . 8 (𝑥 = 𝑋 → (𝜓𝜒))
43pm5.32i 574 . . . . . . 7 ((𝑥 = 𝑋𝜓) ↔ (𝑥 = 𝑋𝜒))
54rexbii 3100 . . . . . 6 (∃𝑦𝐵 (𝑥 = 𝑋𝜓) ↔ ∃𝑦𝐵 (𝑥 = 𝑋𝜒))
6 r19.41v 3195 . . . . . 6 (∃𝑦𝐵 (𝑥 = 𝑋𝜓) ↔ (∃𝑦𝐵 𝑥 = 𝑋𝜓))
75, 6bitr3i 277 . . . . 5 (∃𝑦𝐵 (𝑥 = 𝑋𝜒) ↔ (∃𝑦𝐵 𝑥 = 𝑋𝜓))
82, 7bitr4di 289 . . . 4 (𝜑 → ((𝑥𝐴𝜓) ↔ ∃𝑦𝐵 (𝑥 = 𝑋𝜒)))
98exbidv 1920 . . 3 (𝜑 → (∃𝑥(𝑥𝐴𝜓) ↔ ∃𝑥𝑦𝐵 (𝑥 = 𝑋𝜒)))
10 df-rex 3077 . . 3 (∃𝑥𝐴 𝜓 ↔ ∃𝑥(𝑥𝐴𝜓))
11 19.41v 1949 . . . . 5 (∃𝑥(𝑥 = 𝑋𝜒) ↔ (∃𝑥 𝑥 = 𝑋𝜒))
1211rexbii 3100 . . . 4 (∃𝑦𝐵𝑥(𝑥 = 𝑋𝜒) ↔ ∃𝑦𝐵 (∃𝑥 𝑥 = 𝑋𝜒))
13 rexcom4 3294 . . . 4 (∃𝑦𝐵𝑥(𝑥 = 𝑋𝜒) ↔ ∃𝑥𝑦𝐵 (𝑥 = 𝑋𝜒))
1412, 13bitr3i 277 . . 3 (∃𝑦𝐵 (∃𝑥 𝑥 = 𝑋𝜒) ↔ ∃𝑥𝑦𝐵 (𝑥 = 𝑋𝜒))
159, 10, 143bitr4g 314 . 2 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 (∃𝑥 𝑥 = 𝑋𝜒)))
16 rexxfr3dALT.a . . . . 5 (𝜑𝑋𝑉)
17 elisset 2826 . . . . 5 (𝑋𝑉 → ∃𝑥 𝑥 = 𝑋)
1816, 17syl 17 . . . 4 (𝜑 → ∃𝑥 𝑥 = 𝑋)
1918biantrurd 532 . . 3 (𝜑 → (𝜒 ↔ (∃𝑥 𝑥 = 𝑋𝜒)))
2019rexbidv 3185 . 2 (𝜑 → (∃𝑦𝐵 𝜒 ↔ ∃𝑦𝐵 (∃𝑥 𝑥 = 𝑋𝜒)))
2115, 20bitr4d 282 1 (𝜑 → (∃𝑥𝐴 𝜓 ↔ ∃𝑦𝐵 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wrex 3076
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-11 2158
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-clel 2819  df-rex 3077
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator