Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaeqi Structured version   Visualization version   GIF version

Theorem riotaeqi 36163
Description: Equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025.)
Hypothesis
Ref Expression
riotaeqi.1 𝐴 = 𝐵
Assertion
Ref Expression
riotaeqi (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑)

Proof of Theorem riotaeqi
StepHypRef Expression
1 riotaeqi.1 . 2 𝐴 = 𝐵
2 biid 261 . 2 (𝜑𝜑)
31, 2riotaeqbii 36162 1 (𝑥𝐴 𝜑) = (𝑥𝐵 𝜑)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540  crio 7359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1543  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-v 3461  df-ss 3943  df-uni 4884  df-iota 6483  df-riota 7360
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator