![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaeqi | Structured version Visualization version GIF version |
Description: Equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
riotaeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
riotaeqi | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | biid 261 | . 2 ⊢ (𝜑 ↔ 𝜑) | |
3 | 1, 2 | riotaeqbii 36154 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1537 ℩crio 7398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-iota 6520 df-riota 7399 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |