| Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaeqi | Structured version Visualization version GIF version | ||
| Description: Equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025.) |
| Ref | Expression |
|---|---|
| riotaeqi.1 | ⊢ 𝐴 = 𝐵 |
| Ref | Expression |
|---|---|
| riotaeqi | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | riotaeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
| 2 | biid 261 | . 2 ⊢ (𝜑 ↔ 𝜑) | |
| 3 | 1, 2 | riotaeqbii 36242 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑) |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 ℩crio 7302 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1544 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-v 3438 df-ss 3914 df-uni 4857 df-iota 6437 df-riota 7303 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |