![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaeqi | Structured version Visualization version GIF version |
Description: Equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
riotaeqi.1 | ⊢ 𝐴 = 𝐵 |
Ref | Expression |
---|---|
riotaeqi | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqi.1 | . 2 ⊢ 𝐴 = 𝐵 | |
2 | biid 261 | . 2 ⊢ (𝜑 ↔ 𝜑) | |
3 | 1, 2 | riotaeqbii 36140 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1535 ℩crio 7381 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1963 ax-7 2003 ax-8 2106 ax-9 2114 ax-ext 2704 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1538 df-ex 1775 df-sb 2061 df-clab 2711 df-cleq 2725 df-clel 2812 df-v 3479 df-ss 3980 df-uni 4916 df-iota 6511 df-riota 7382 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |