Users' Mathboxes Mathbox for Gino Giotto < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  riotaeqbii Structured version   Visualization version   GIF version

Theorem riotaeqbii 36154
Description: Equivalent wff's and equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025.)
Hypotheses
Ref Expression
riotaeqbii.1 𝐴 = 𝐵
riotaeqbii.2 (𝜑𝜓)
Assertion
Ref Expression
riotaeqbii (𝑥𝐴 𝜑) = (𝑥𝐵 𝜓)

Proof of Theorem riotaeqbii
StepHypRef Expression
1 riotaeqbii.1 . . . . 5 𝐴 = 𝐵
21eleq2i 2836 . . . 4 (𝑥𝐴𝑥𝐵)
3 riotaeqbii.2 . . . 4 (𝜑𝜓)
42, 3anbi12i 627 . . 3 ((𝑥𝐴𝜑) ↔ (𝑥𝐵𝜓))
54iotabii 6553 . 2 (℩𝑥(𝑥𝐴𝜑)) = (℩𝑥(𝑥𝐵𝜓))
6 df-riota 7399 . 2 (𝑥𝐴 𝜑) = (℩𝑥(𝑥𝐴𝜑))
7 df-riota 7399 . 2 (𝑥𝐵 𝜓) = (℩𝑥(𝑥𝐵𝜓))
85, 6, 73eqtr4i 2778 1 (𝑥𝐴 𝜑) = (𝑥𝐵 𝜓)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1537  wcel 2108  cio 6518  crio 7398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711
This theorem depends on definitions:  df-bi 207  df-an 396  df-tru 1540  df-ex 1778  df-sb 2065  df-clab 2718  df-cleq 2732  df-clel 2819  df-v 3490  df-ss 3993  df-uni 4932  df-iota 6520  df-riota 7399
This theorem is referenced by:  riotaeqi  36155
  Copyright terms: Public domain W3C validator