![]() |
Mathbox for Gino Giotto |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > riotaeqbii | Structured version Visualization version GIF version |
Description: Equivalent wff's and equal domains yield equal restricted iotas. Inference version. (Contributed by GG, 1-Sep-2025.) |
Ref | Expression |
---|---|
riotaeqbii.1 | ⊢ 𝐴 = 𝐵 |
riotaeqbii.2 | ⊢ (𝜑 ↔ 𝜓) |
Ref | Expression |
---|---|
riotaeqbii | ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜓) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | riotaeqbii.1 | . . . . 5 ⊢ 𝐴 = 𝐵 | |
2 | 1 | eleq2i 2836 | . . . 4 ⊢ (𝑥 ∈ 𝐴 ↔ 𝑥 ∈ 𝐵) |
3 | riotaeqbii.2 | . . . 4 ⊢ (𝜑 ↔ 𝜓) | |
4 | 2, 3 | anbi12i 627 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝜑) ↔ (𝑥 ∈ 𝐵 ∧ 𝜓)) |
5 | 4 | iotabii 6553 | . 2 ⊢ (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) = (℩𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) |
6 | df-riota 7399 | . 2 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
7 | df-riota 7399 | . 2 ⊢ (℩𝑥 ∈ 𝐵 𝜓) = (℩𝑥(𝑥 ∈ 𝐵 ∧ 𝜓)) | |
8 | 5, 6, 7 | 3eqtr4i 2778 | 1 ⊢ (℩𝑥 ∈ 𝐴 𝜑) = (℩𝑥 ∈ 𝐵 𝜓) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ℩cio 6518 ℩crio 7398 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 |
This theorem depends on definitions: df-bi 207 df-an 396 df-tru 1540 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-v 3490 df-ss 3993 df-uni 4932 df-iota 6520 df-riota 7399 |
This theorem is referenced by: riotaeqi 36155 |
Copyright terms: Public domain | W3C validator |