|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > rmoanidOLD | Structured version Visualization version GIF version | ||
| Description: Obsolete version of rmoanid 3389 as of 12-Jan-2025. (Contributed by Peter Mazsa, 24-May-2018.) (Proof modification is discouraged.) (New usage is discouraged.) | 
| Ref | Expression | 
|---|---|
| rmoanidOLD | ⊢ (∃*𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥 ∈ 𝐴 𝜑) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | anabs5 663 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 2 | 1 | mobii 2547 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | 
| 3 | df-rmo 3379 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
| 4 | df-rmo 3379 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃*𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥 ∈ 𝐴 𝜑) | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2107 ∃*wmo 2537 ∃*wrmo 3378 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-mo 2539 df-rmo 3379 | 
| This theorem is referenced by: (None) | 
| Copyright terms: Public domain | W3C validator |