![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rmoanidOLD | Structured version Visualization version GIF version |
Description: Obsolete version of rmoanid 3398 as of 12-Jan-2025. (Contributed by Peter Mazsa, 24-May-2018.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rmoanidOLD | ⊢ (∃*𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥 ∈ 𝐴 𝜑) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anabs5 662 | . . 3 ⊢ ((𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ (𝑥 ∈ 𝐴 ∧ 𝜑)) | |
2 | 1 | mobii 2551 | . 2 ⊢ (∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑)) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) |
3 | df-rmo 3388 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ (𝑥 ∈ 𝐴 ∧ 𝜑))) | |
4 | df-rmo 3388 | . 2 ⊢ (∃*𝑥 ∈ 𝐴 𝜑 ↔ ∃*𝑥(𝑥 ∈ 𝐴 ∧ 𝜑)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (∃*𝑥 ∈ 𝐴 (𝑥 ∈ 𝐴 ∧ 𝜑) ↔ ∃*𝑥 ∈ 𝐴 𝜑) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∈ wcel 2108 ∃*wmo 2541 ∃*wrmo 3387 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 |
This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1778 df-mo 2543 df-rmo 3388 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |