MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  reuanidOLD Structured version   Visualization version   GIF version

Theorem reuanidOLD 3390
Description: Obsolete version of reuanid 3388 as of 12-Jan-2025. (Contributed by Peter Mazsa, 12-Feb-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
reuanidOLD (∃!𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃!𝑥𝐴 𝜑)

Proof of Theorem reuanidOLD
StepHypRef Expression
1 anabs5 662 . . 3 ((𝑥𝐴 ∧ (𝑥𝐴𝜑)) ↔ (𝑥𝐴𝜑))
21eubii 2580 . 2 (∃!𝑥(𝑥𝐴 ∧ (𝑥𝐴𝜑)) ↔ ∃!𝑥(𝑥𝐴𝜑))
3 df-reu 3378 . 2 (∃!𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃!𝑥(𝑥𝐴 ∧ (𝑥𝐴𝜑)))
4 df-reu 3378 . 2 (∃!𝑥𝐴 𝜑 ↔ ∃!𝑥(𝑥𝐴𝜑))
52, 3, 43bitr4i 303 1 (∃!𝑥𝐴 (𝑥𝐴𝜑) ↔ ∃!𝑥𝐴 𝜑)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397  wcel 2107  ∃!weu 2563  ∃!wreu 3375
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1783  df-mo 2535  df-eu 2564  df-reu 3378
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator