MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmobida Structured version   Visualization version   GIF version

Theorem rmobida 3277
Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by NM, 16-Jun-2017.)
Hypotheses
Ref Expression
rmobida.1 𝑥𝜑
rmobida.2 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rmobida (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))

Proof of Theorem rmobida
StepHypRef Expression
1 rmobida.1 . . 3 𝑥𝜑
2 rmobida.2 . . . 4 ((𝜑𝑥𝐴) → (𝜓𝜒))
32pm5.32da 574 . . 3 (𝜑 → ((𝑥𝐴𝜓) ↔ (𝑥𝐴𝜒)))
41, 3mobid 2580 . 2 (𝜑 → (∃*𝑥(𝑥𝐴𝜓) ↔ ∃*𝑥(𝑥𝐴𝜒)))
5 df-rmo 3063 . 2 (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥(𝑥𝐴𝜓))
6 df-rmo 3063 . 2 (∃*𝑥𝐴 𝜒 ↔ ∃*𝑥(𝑥𝐴𝜒))
74, 5, 63bitr4g 305 1 (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wnf 1878  wcel 2155  ∃*wmo 2563  ∃*wrmo 3058
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-12 2211
This theorem depends on definitions:  df-bi 198  df-an 385  df-ex 1875  df-nf 1879  df-mo 2565  df-rmo 3063
This theorem is referenced by:  rmobidva  3278  reuan  41875
  Copyright terms: Public domain W3C validator