MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmobidvaOLD Structured version   Visualization version   GIF version

Theorem rmobidvaOLD 3403
Description: Obsolete version of rmobidv 3392 as of 23-Nov-2024. (Contributed by NM, 16-Jun-2017.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
rmobidvaOLD.1 ((𝜑𝑥𝐴) → (𝜓𝜒))
Assertion
Ref Expression
rmobidvaOLD (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
Distinct variable group:   𝜑,𝑥
Allowed substitution hints:   𝜓(𝑥)   𝜒(𝑥)   𝐴(𝑥)

Proof of Theorem rmobidvaOLD
StepHypRef Expression
1 nfv 1916 . 2 𝑥𝜑
2 rmobidvaOLD.1 . 2 ((𝜑𝑥𝐴) → (𝜓𝜒))
31, 2rmobida 3401 1 (𝜑 → (∃*𝑥𝐴 𝜓 ↔ ∃*𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  wcel 2105  ∃*wrmo 3374
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-12 2170
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1781  df-nf 1785  df-mo 2533  df-rmo 3375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator