|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > reubida | Structured version Visualization version GIF version | ||
| Description: Formula-building rule for restricted existential quantifier (deduction form). (Contributed by Mario Carneiro, 19-Nov-2016.) | 
| Ref | Expression | 
|---|---|
| rmobida.1 | ⊢ Ⅎ𝑥𝜑 | 
| rmobida.2 | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | 
| Ref | Expression | 
|---|---|
| reubida | ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | rmobida.1 | . . 3 ⊢ Ⅎ𝑥𝜑 | |
| 2 | rmobida.2 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | pm5.32da 579 | . . 3 ⊢ (𝜑 → ((𝑥 ∈ 𝐴 ∧ 𝜓) ↔ (𝑥 ∈ 𝐴 ∧ 𝜒))) | 
| 4 | 1, 3 | eubid 2586 | . 2 ⊢ (𝜑 → (∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓) ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒))) | 
| 5 | df-reu 3380 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜓)) | |
| 6 | df-reu 3380 | . 2 ⊢ (∃!𝑥 ∈ 𝐴 𝜒 ↔ ∃!𝑥(𝑥 ∈ 𝐴 ∧ 𝜒)) | |
| 7 | 4, 5, 6 | 3bitr4g 314 | 1 ⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 𝜒)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 Ⅎwnf 1782 ∈ wcel 2107 ∃!weu 2567 ∃!wreu 3377 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-12 2176 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-ex 1779 df-nf 1783 df-mo 2539 df-eu 2568 df-reu 3380 | 
| This theorem is referenced by: reuan 3895 poimirlem25 37653 | 
| Copyright terms: Public domain | W3C validator |