Proof of Theorem moelOLD
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ralcom4 3286 | . 2
⊢
(∀𝑥 ∈
𝐴 ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 = 𝑦) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐴 → 𝑥 = 𝑦)) | 
| 2 |  | df-ral 3062 | . . 3
⊢
(∀𝑦 ∈
𝐴 𝑥 = 𝑦 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 = 𝑦)) | 
| 3 | 2 | ralbii 3093 | . 2
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 = 𝑦)) | 
| 4 |  | alcom 2159 | . . 3
⊢
(∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦) ↔ ∀𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) | 
| 5 |  | eleq1w 2824 | . . . 4
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | 
| 6 | 5 | mo4 2566 | . . 3
⊢
(∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) | 
| 7 |  | df-ral 3062 | . . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝑦 ∈ 𝐴 → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝑥 = 𝑦))) | 
| 8 |  | impexp 450 | . . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝑥 = 𝑦))) | 
| 9 | 8 | albii 1819 | . . . . 5
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝑥 = 𝑦))) | 
| 10 | 7, 9 | bitr4i 278 | . . . 4
⊢
(∀𝑥 ∈
𝐴 (𝑦 ∈ 𝐴 → 𝑥 = 𝑦) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) | 
| 11 | 10 | albii 1819 | . . 3
⊢
(∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐴 → 𝑥 = 𝑦) ↔ ∀𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) | 
| 12 | 4, 6, 11 | 3bitr4i 303 | . 2
⊢
(∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐴 → 𝑥 = 𝑦)) | 
| 13 | 1, 3, 12 | 3bitr4ri 304 | 1
⊢
(∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) |