Proof of Theorem moelOLD
Step | Hyp | Ref
| Expression |
1 | | ralcom4 3266 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 = 𝑦) ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐴 → 𝑥 = 𝑦)) |
2 | | df-ral 3063 |
. . 3
⊢
(∀𝑦 ∈
𝐴 𝑥 = 𝑦 ↔ ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 = 𝑦)) |
3 | 2 | ralbii 3093 |
. 2
⊢
(∀𝑥 ∈
𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦(𝑦 ∈ 𝐴 → 𝑥 = 𝑦)) |
4 | | alcom 2154 |
. . 3
⊢
(∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦) ↔ ∀𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) |
5 | | eleq1w 2819 |
. . . 4
⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) |
6 | 5 | mo4 2564 |
. . 3
⊢
(∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥∀𝑦((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) |
7 | | df-ral 3063 |
. . . . 5
⊢
(∀𝑥 ∈
𝐴 (𝑦 ∈ 𝐴 → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝑥 = 𝑦))) |
8 | | impexp 452 |
. . . . . 6
⊢ (((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦) ↔ (𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝑥 = 𝑦))) |
9 | 8 | albii 1819 |
. . . . 5
⊢
(∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥 ∈ 𝐴 → (𝑦 ∈ 𝐴 → 𝑥 = 𝑦))) |
10 | 7, 9 | bitr4i 278 |
. . . 4
⊢
(∀𝑥 ∈
𝐴 (𝑦 ∈ 𝐴 → 𝑥 = 𝑦) ↔ ∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) |
11 | 10 | albii 1819 |
. . 3
⊢
(∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐴 → 𝑥 = 𝑦) ↔ ∀𝑦∀𝑥((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 𝑥 = 𝑦)) |
12 | 4, 6, 11 | 3bitr4i 303 |
. 2
⊢
(∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑦∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐴 → 𝑥 = 𝑦)) |
13 | 1, 3, 12 | 3bitr4ri 304 |
1
⊢
(∃*𝑥 𝑥 ∈ 𝐴 ↔ ∀𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 𝑥 = 𝑦) |