MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  moelOLD Structured version   Visualization version   GIF version

Theorem moelOLD 3378
Description: Obsolete version of moel 3377 as of 23-Nov-2024. (Contributed by Thierry Arnoux, 26-Jul-2018.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
moelOLD (∃*𝑥 𝑥𝐴 ↔ ∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦)
Distinct variable group:   𝑥,𝑦,𝐴

Proof of Theorem moelOLD
StepHypRef Expression
1 ralcom4 3266 . 2 (∀𝑥𝐴𝑦(𝑦𝐴𝑥 = 𝑦) ↔ ∀𝑦𝑥𝐴 (𝑦𝐴𝑥 = 𝑦))
2 df-ral 3063 . . 3 (∀𝑦𝐴 𝑥 = 𝑦 ↔ ∀𝑦(𝑦𝐴𝑥 = 𝑦))
32ralbii 3093 . 2 (∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦 ↔ ∀𝑥𝐴𝑦(𝑦𝐴𝑥 = 𝑦))
4 alcom 2154 . . 3 (∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦) ↔ ∀𝑦𝑥((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦))
5 eleq1w 2819 . . . 4 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
65mo4 2564 . . 3 (∃*𝑥 𝑥𝐴 ↔ ∀𝑥𝑦((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦))
7 df-ral 3063 . . . . 5 (∀𝑥𝐴 (𝑦𝐴𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝑦𝐴𝑥 = 𝑦)))
8 impexp 452 . . . . . 6 (((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦) ↔ (𝑥𝐴 → (𝑦𝐴𝑥 = 𝑦)))
98albii 1819 . . . . 5 (∀𝑥((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦) ↔ ∀𝑥(𝑥𝐴 → (𝑦𝐴𝑥 = 𝑦)))
107, 9bitr4i 278 . . . 4 (∀𝑥𝐴 (𝑦𝐴𝑥 = 𝑦) ↔ ∀𝑥((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦))
1110albii 1819 . . 3 (∀𝑦𝑥𝐴 (𝑦𝐴𝑥 = 𝑦) ↔ ∀𝑦𝑥((𝑥𝐴𝑦𝐴) → 𝑥 = 𝑦))
124, 6, 113bitr4i 303 . 2 (∃*𝑥 𝑥𝐴 ↔ ∀𝑦𝑥𝐴 (𝑦𝐴𝑥 = 𝑦))
131, 3, 123bitr4ri 304 1 (∃*𝑥 𝑥𝐴 ↔ ∀𝑥𝐴𝑦𝐴 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wal 1537  wcel 2104  ∃*wmo 2536  wral 3062
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-11 2152
This theorem depends on definitions:  df-bi 206  df-an 398  df-ex 1780  df-mo 2538  df-clel 2814  df-ral 3063
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator