Proof of Theorem reuan
Step | Hyp | Ref
| Expression |
1 | | rmoanim.1 |
. . . . . 6
⊢
Ⅎ𝑥𝜑 |
2 | | simpl 483 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝜓) → 𝜑) |
3 | 2 | a1i 11 |
. . . . . 6
⊢ (𝑥 ∈ 𝐴 → ((𝜑 ∧ 𝜓) → 𝜑)) |
4 | 1, 3 | rexlimi 3248 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) → 𝜑) |
5 | 4 | adantr 481 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ∧ ∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) → 𝜑) |
6 | | simpr 485 |
. . . . . 6
⊢ ((𝜑 ∧ 𝜓) → 𝜓) |
7 | 6 | reximi 3178 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) → ∃𝑥 ∈ 𝐴 𝜓) |
8 | 7 | adantr 481 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ∧ ∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) → ∃𝑥 ∈ 𝐴 𝜓) |
9 | | nfre1 3239 |
. . . . . 6
⊢
Ⅎ𝑥∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) |
10 | 4 | adantr 481 |
. . . . . . . . 9
⊢
((∃𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → 𝜑) |
11 | 10 | a1d 25 |
. . . . . . . 8
⊢
((∃𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜓 → 𝜑)) |
12 | 11 | ancrd 552 |
. . . . . . 7
⊢
((∃𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → (𝜓 → (𝜑 ∧ 𝜓))) |
13 | 6, 12 | impbid2 225 |
. . . . . 6
⊢
((∃𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ∧ 𝑥 ∈ 𝐴) → ((𝜑 ∧ 𝜓) ↔ 𝜓)) |
14 | 9, 13 | rmobida 3326 |
. . . . 5
⊢
(∃𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) → (∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ↔ ∃*𝑥 ∈ 𝐴 𝜓)) |
15 | 14 | biimpa 477 |
. . . 4
⊢
((∃𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ∧ ∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) → ∃*𝑥 ∈ 𝐴 𝜓) |
16 | 5, 8, 15 | jca32 516 |
. . 3
⊢
((∃𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ∧ ∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) → (𝜑 ∧ (∃𝑥 ∈ 𝐴 𝜓 ∧ ∃*𝑥 ∈ 𝐴 𝜓))) |
17 | | reu5 3361 |
. . 3
⊢
(∃!𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ↔ (∃𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓) ∧ ∃*𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
18 | | reu5 3361 |
. . . 4
⊢
(∃!𝑥 ∈
𝐴 𝜓 ↔ (∃𝑥 ∈ 𝐴 𝜓 ∧ ∃*𝑥 ∈ 𝐴 𝜓)) |
19 | 18 | anbi2i 623 |
. . 3
⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) ↔ (𝜑 ∧ (∃𝑥 ∈ 𝐴 𝜓 ∧ ∃*𝑥 ∈ 𝐴 𝜓))) |
20 | 16, 17, 19 | 3imtr4i 292 |
. 2
⊢
(∃!𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) → (𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓)) |
21 | | ibar 529 |
. . . . 5
⊢ (𝜑 → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
22 | 21 | adantr 481 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → (𝜓 ↔ (𝜑 ∧ 𝜓))) |
23 | 1, 22 | reubida 3321 |
. . 3
⊢ (𝜑 → (∃!𝑥 ∈ 𝐴 𝜓 ↔ ∃!𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓))) |
24 | 23 | biimpa 477 |
. 2
⊢ ((𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓) → ∃!𝑥 ∈ 𝐴 (𝜑 ∧ 𝜓)) |
25 | 20, 24 | impbii 208 |
1
⊢
(∃!𝑥 ∈
𝐴 (𝜑 ∧ 𝜓) ↔ (𝜑 ∧ ∃!𝑥 ∈ 𝐴 𝜓)) |