MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rmoeq Structured version   Visualization version   GIF version

Theorem rmoeq 3727
Description: Equality's restricted existential "at most one" property. (Contributed by Thierry Arnoux, 30-Mar-2018.) (Revised by AV, 27-Oct-2020.) (Proof shortened by NM, 29-Oct-2020.)
Assertion
Ref Expression
rmoeq ∃*𝑥𝐵 𝑥 = 𝐴
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem rmoeq
StepHypRef Expression
1 moeq 3696 . . 3 ∃*𝑥 𝑥 = 𝐴
21moani 2539 . 2 ∃*𝑥(𝑥𝐵𝑥 = 𝐴)
3 df-rmo 3368 . 2 (∃*𝑥𝐵 𝑥 = 𝐴 ↔ ∃*𝑥(𝑥𝐵𝑥 = 𝐴))
42, 3mpbir 230 1 ∃*𝑥𝐵 𝑥 = 𝐴
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1533  wcel 2098  ∃*wmo 2524  ∃*wrmo 3367
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-9 2108  ax-ext 2695
This theorem depends on definitions:  df-bi 206  df-an 396  df-ex 1774  df-mo 2526  df-cleq 2716  df-rmo 3368
This theorem is referenced by:  nbusgredgeu  29095
  Copyright terms: Public domain W3C validator